import random from paddle.v2.image import load_and_transform import paddle.v2 as paddle from multiprocessing import cpu_count def train_mapper(sample): ''' map image path to type needed by model input layer for the training set ''' img, label = sample img = paddle.image.load_image(img) img = paddle.image.simple_transform(img, 256, 224, True) return img.flatten().astype('float32'), label def test_mapper(sample): ''' map image path to type needed by model input layer for the test set ''' img, label = sample img = paddle.image.load_image(img) img = paddle.image.simple_transform(img, 256, 224, True) return img.flatten().astype('float32'), label def train_reader(train_list, buffered_size=1024): def reader(): with open(train_list, 'r') as f: lines = [line.strip() for line in f] for line in lines: img_path, lab = line.strip().split('\t') yield img_path, int(lab) return paddle.reader.xmap_readers(train_mapper, reader, cpu_count(), buffered_size) def test_reader(test_list, buffered_size=1024): def reader(): with open(test_list, 'r') as f: lines = [line.strip() for line in f] for line in lines: img_path, lab = line.strip().split('\t') yield img_path, int(lab) return paddle.reader.xmap_readers(test_mapper, reader, cpu_count(), buffered_size) if __name__ == '__main__': #for im in train_reader('train.list'): # print len(im[0]) #for im in train_reader('test.list'): # print len(im[0]) paddle.dataset.flowers.train()