/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include using namespace paddle; // NOLINT using namespace std; // NOLINT static const string& CONFIG_FILE = "trainer/tests/sample_trainer_rnn_gen.conf"; static const string& OUTPUT_DIR = "trainer/tests/dump_text.test"; static string modelDir = "trainer/tests/rnn_gen_test_model_dir/t1"; // NOLINT static string expectFile = // NOLINT "trainer/tests/rnn_gen_test_model_dir/r1.test"; // NOLINT P_DECLARE_string(config_args); vector readRetFile(const string& fname) { ifstream inFile(fname); float ret; vector nums; while (inFile >> ret) { nums.push_back(ret); } return nums; } void checkOutput(const string& expRetFile) { vector rets = readRetFile(OUTPUT_DIR); vector expRets = readRetFile(expRetFile); EXPECT_EQ(rets.size(), expRets.size()); for (size_t i = 0; i < rets.size(); i++) { EXPECT_FLOAT_EQ(rets[i], expRets[i]); } } void prepareInArgs(vector& inArgs, const size_t batchSize, bool useGpu) { inArgs.clear(); // sentence id Argument sentId; sentId.value = nullptr; IVector::resizeOrCreate(sentId.ids, batchSize, useGpu); for (size_t i = 0; i < batchSize; ++i) sentId.ids->setElement(i, i); inArgs.emplace_back(sentId); // a dummy layer to decide batch size Argument dummyInput; dummyInput.value = Matrix::create(batchSize, 2, false, useGpu); dummyInput.value->randomizeUniform(); inArgs.emplace_back(dummyInput); } void testGeneration(bool useGpu, const string& expRetFile) { FLAGS_use_gpu = useGpu; auto config = std::make_shared(CONFIG_FILE); unique_ptr gradientMachine(GradientMachine::create(*config)); gradientMachine->loadParameters(modelDir); vector inArgs(2); const size_t batchSize = 15; prepareInArgs(inArgs, batchSize, useGpu); vector outArgs; unique_ptr testEvaluator(gradientMachine->makeEvaluator()); testEvaluator->start(); gradientMachine->forward(inArgs, &outArgs, PASS_TEST); gradientMachine->eval(testEvaluator.get()); testEvaluator->finish(); checkOutput(expRetFile); } #ifndef PADDLE_TYPE_DOUBLE TEST(RecurrentGradientMachine, test_generation) { #ifdef PADDLE_ONLY_CPU const auto useGpuConfs = {false}; #else const auto useGpuConfs = {true, false}; #endif FLAGS_config_args = "beam_search=0"; // no beam search string expectRetFileNoBeam = expectFile + ".nobeam"; for (auto useGpu : useGpuConfs) { testGeneration(useGpu, expectRetFileNoBeam); } FLAGS_config_args = "beam_search=1"; // no beam search string expectRetFileBeam = expectFile + ".beam"; for (auto useGpu : useGpuConfs) { testGeneration(useGpu, expectRetFileBeam); } } #endif int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); CHECK(argc == 1 || argc == 3); if (argc == 3) { modelDir = argv[1]; expectFile = argv[2]; } testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }