# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. """ FGSM demos on mnist using advbox tool. """ import paddle.v2 as paddle import paddle.v2.fluid as fluid import matplotlib.pyplot as plt import numpy as np from advbox.models.paddle import PaddleModel from advbox.attacks.gradientsign import GradientSignAttack def cnn_model(img): """ Mnist cnn model Args: img(Varaible): the input image to be recognized Returns: Variable: the label prediction """ #conv1 = fluid.nets.conv2d() conv_pool_1 = fluid.nets.simple_img_conv_pool( input=img, num_filters=20, filter_size=5, pool_size=2, pool_stride=2, act='relu') conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, num_filters=50, filter_size=5, pool_size=2, pool_stride=2, act='relu') logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax') return logits def main(): """ Advbox demo which demonstrate how to use advbox. """ IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') logits = cnn_model(img) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) place = fluid.CPUPlace() exe = fluid.Executor(place) BATCH_SIZE = 1 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=500), batch_size=BATCH_SIZE) feeder = fluid.DataFeeder( feed_list=[IMG_NAME, LABEL_NAME], place=place, program=fluid.default_main_program()) fluid.io.load_params( exe, "./mnist/", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1)) att = GradientSignAttack(m) for data in train_reader(): # fgsm attack adv_img = att(data) plt.imshow(n[0][0], cmap='Greys_r') plt.show() #np.save('adv_img', adv_img) break if __name__ == '__main__': main()