# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import op_test import unittest import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard class TestCastOp1(op_test.OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float32')} self.outputs = {'Out': ipt.astype('float64')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP32), 'out_dtype': int(core.VarDesc.VarType.FP64) } self.op_type = 'cast' def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out']) class TestCastOp2(op_test.OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float16')} self.outputs = {'Out': ipt.astype('float32')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP16), 'out_dtype': int(core.VarDesc.VarType.FP32) } self.op_type = 'cast' def test_check_output(self): self.check_output(atol=1e-3) class TestCastOp3(op_test.OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float32')} self.outputs = {'Out': ipt.astype('float16')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP32), 'out_dtype': int(core.VarDesc.VarType.FP16) } self.op_type = 'cast' def test_check_output(self): self.check_output(atol=1e-3) class TestCastOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of cast_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32') # The input dtype of cast_op must be bool, float16, float32, float64, int32, int64, uint8. x2 = fluid.layers.data(name='x2', shape=[4], dtype='int8') self.assertRaises(TypeError, fluid.layers.cast, x2, 'int32') x3 = fluid.layers.data(name='x3', shape=[4], dtype='int16') self.assertRaises(TypeError, fluid.layers.cast, x3, 'int32') if __name__ == '__main__': unittest.main()