/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT DECLARE_bool(use_gpu); DECLARE_int32(gpu_id); DECLARE_double(checkgrad_eps); DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_bool(prev_batch_state); // Do one forward pass of ConvLayer using either exconv or cudnn_conv MatrixPtr doOneConvTest(size_t imgSize, size_t output_x, size_t stride, size_t padding, size_t filter_size, size_t channel, size_t numfilters, size_t groups, MatrixPtr& inputData, real* param, bool useGpu) { TestConfig config; config.biasSize = numfilters; if (useGpu) { config.layerConfig.set_type("cudnn_conv"); } else { config.layerConfig.set_type("exconv"); } config.layerConfig.set_num_filters(numfilters); config.layerConfig.set_partial_sum(1); config.layerConfig.set_shared_biases(true); size_t weightSize = channel * filter_size * filter_size * config.layerConfig.num_filters() / groups; config.inputDefs.push_back( {INPUT_DATA, "layer_0", imgSize * imgSize * channel, weightSize}); LayerInputConfig* input = config.layerConfig.add_inputs(); ConvConfig* conv = input->mutable_conv_conf(); conv->set_filter_size(filter_size); conv->set_filter_size_y(filter_size); conv->set_channels(channel); conv->set_padding(padding); conv->set_padding_y(padding); conv->set_stride(stride); conv->set_stride_y(stride); conv->set_groups(groups); conv->set_filter_channels(channel / groups); conv->set_img_size(imgSize); conv->set_output_x(output_x); config.layerConfig.set_size(conv->output_x() * conv->output_x() * config.layerConfig.num_filters()); config.layerConfig.set_name("conv"); std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer( config, &dataLayers, &datas, &layerMap, "conv", 1, false, useGpu); dataLayers[0]->getOutputValue()->zeroMem(); dataLayers[0]->getOutputValue()->copyFrom(*inputData); // test layer initialize std::vector parameters; LayerPtr convLayer; initTestLayer(config, &layerMap, ¶meters, &convLayer); convLayer->getBiasParameter()->zeroMem(); convLayer->getParameters()[0]->zeroMem(); convLayer->getParameters()[0] ->getBuf(PARAMETER_VALUE) ->copyFrom(param, weightSize); convLayer->forward(PASS_GC); return convLayer->getOutputValue(); } TEST(Layer, convParaUnified) { #ifndef PADDLE_ONLY_CPU MatrixPtr input, resultCpu, resultGpu; input = Matrix::create(1, 4 * 4, false, false); real inputData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; real param[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1}; input->setData(inputData); resultCpu = doOneConvTest(/* imgSize */ 4, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 3, /*channel*/ 1, /*numfilters*/ 2, /*groups*/ 1, input, param, false); resultGpu = doOneConvTest(/* imgSize */ 4, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 3, /*channel*/ 1, /*numfilters*/ 2, /*groups*/ 1, input, param, true); checkMatrixEqual(resultCpu, resultGpu); input = Matrix::create(1, 3 * 3 * 2, false, false); real inputData2[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}; real param2[] = {1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1}; input->setData(inputData2); resultCpu = doOneConvTest(/* imgSize */ 3, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 2, /*channel*/ 2, /*numfilters*/ 2, /*groups*/ 1, input, param2, false); resultGpu = doOneConvTest(/* imgSize */ 3, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 2, /*channel*/ 2, /*numfilters*/ 2, /*groups*/ 1, input, param2, true); checkMatrixEqual(resultCpu, resultGpu); real param3[] = {1, 2, 3, 4, 4, 3, 2, 1}; resultCpu = doOneConvTest(/* imgSize */ 3, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 2, /*channel*/ 2, /*numfilters*/ 2, /*groups*/ 2, input, param3, false); resultGpu = doOneConvTest(/* imgSize */ 3, /* output_x */ 2, /* stride */ 1, /* padding */ 0, /* filter_size */ 2, /*channel*/ 2, /*numfilters*/ 2, /*groups*/ 2, input, param3, true); checkMatrixEqual(resultCpu, resultGpu); #endif } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }