/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/pten/api/include/tensor.h" #include "paddle/pten/api/lib/backend_set.h" #include "paddle/pten/api/lib/data_type_set.h" #include "paddle/pten/backends/all_context.h" #include "paddle/pten/common/data_type.h" #include "paddle/pten/common/layout.h" #include "paddle/pten/core/selected_rows.h" // TODO(chenweihang): split Key, Kernel, Factory into diff files #include "paddle/pten/core/kernel_factory.h" namespace paddle { namespace experimental { namespace detail { BackendSet GetTensorBackendSet(const Tensor& t); std::size_t CountLeadingZeros(uint64_t val); } // namespace detail pten::DeviceContext* GetDeviceContextByBackend(pten::Backend backend); enum class KernelType { DENSE_TENSOR_KENREL, // kernel for DenseTensor SELECTED_ROWS_KENREL // kernel for SelectedRows }; // TODO(chenweihang): support DataLayout and DataType selected struct KernelKeySet { BackendSet backend_set{Backend::UNDEFINED}; DataLayout layout{DataLayout::UNDEFINED}; DataType dtype{DataType::UNDEFINED}; // TODO(chenweihang): iterate all kernelkey for kernel selection pten::KernelKey GetHigestPriorityKernelKey() { return pten::KernelKey(static_cast(64 - detail::CountLeadingZeros( backend_set.bitset())), layout, dtype); } }; namespace detail { template struct ArgsIterator { template inline Functor& apply() { return self(); } template inline Functor& apply(T&& arg, Args&&... args) { self()(std::forward(arg)); if (self().short_circuit()) { return self(); } else { return apply(std::forward(args)...); } } constexpr bool short_circuit() const { return false; } private: inline Functor& self() { return *static_cast(this); } }; struct KernelKeyParser : ArgsIterator { KernelKeySet key_set; // this dtype_set is used for cache multi-inputs dtype and used for // data_promote DataTypeSet dtype_set{DataType::UNDEFINED}; // TODO(chenweihang): deal with multiple diff input Tensors // TODO(chenweihang): add global device guard method to set backend void operator()(const Tensor& x) { key_set.backend_set = key_set.backend_set | detail::GetTensorBackendSet(x); // TODO(chenweihang): selecte multi layout and dtype key_set.layout = x.layout(); key_set.dtype = x.type(); dtype_set = dtype_set | DataTypeSet(x.dtype()); auto promote_result = PromoteTypes(dtype_set); if (promote_result != DataType::UNDEFINED) { key_set.dtype = promote_result; } } void operator()(const std::vector& x) { key_set.backend_set = key_set.backend_set | detail::GetTensorBackendSet(x[0]); // TODO(chenweihang): selecte multi layout and dtype key_set.layout = x[0].layout(); key_set.dtype = x[0].type(); } // skip other type args, these args don't used in kernel selection template void operator()(const T& x) { // do nothing } }; struct KernelTypeParser : ArgsIterator { KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL}; // TODO(chenweihang): deal with multiple diff input Tensors // TODO(chenweihang): add global device guard method to set backend void operator()(const Tensor& x) { if (pten::SelectedRows::classof(x.impl().get())) { kernel_type = KernelType::SELECTED_ROWS_KENREL; } } // skip other type args, these args don't used in kernel selection template void operator()(const T& x) { // do nothing } }; } // namespace detail template KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) { return detail::KernelKeyParser().apply(args...).key_set; } template KernelType ParseKernelTypeByInputArgs(const Args&... args) { return detail::KernelTypeParser().apply(args...).kernel_type; } DataType ParseDataType(DataType dtype); DataType ParseDataType(const Tensor& tensor); DataType ParseDataType(const std::vector& tensors); DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor); Backend ParseBackend(Backend backend); Backend ParseBackend(const Tensor& tensor); template Backend ParseBackend(T t, Args... args) { auto backend_set = BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...)); return static_cast(64 - detail::CountLeadingZeros(backend_set.bitset())); } Backend ParseBackendWithInputOrder(Backend backend, const Tensor& tensor); DataLayout ParseLayout(DataLayout layout); DataLayout ParseLayout(const Tensor& tensor); DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor); } // namespace experimental } // namespace paddle