/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/convert/ut_helper.h" namespace paddle { namespace inference { namespace tensorrt { TEST(elementwise_op, add_weight) { std::unordered_set parameters({"elementwise_add-Y"}); framework::Scope scope; TRTConvertValidation validator(10, parameters, scope, 1 << 15); validator.DeclInputVar("elementwise_add-X", nvinfer1::Dims3(10, 3, 3)); validator.DeclParamVar("elementwise_add-Y", nvinfer1::Dims3(10, 1, 1)); validator.DeclOutputVar("elementwise_add-Out", nvinfer1::Dims3(10, 3, 3)); // Prepare Op description framework::OpDesc desc; desc.SetType("elementwise_add"); desc.SetInput("X", {"elementwise_add-X"}); desc.SetInput("Y", {"elementwise_add-Y"}); desc.SetOutput("Out", {"elementwise_add-Out"}); int axis = 1; desc.SetAttr("axis", axis); validator.SetOp(*desc.Proto()); validator.Execute(8); } TEST(elementwise_op, native) { for (std::string type : {"add", "mul"}) { int batch_size = 8; std::unordered_set parameters; framework::Scope scope; TRTConvertValidation validator(batch_size, parameters, scope, 1 << 15); validator.DeclInputVar("elementwise_" + type + "-X", nvinfer1::Dims3(10, 3, 3)); validator.DeclInputVar("elementwise_" + type + "-Y", nvinfer1::Dims3(10, 3, 3)); validator.DeclOutputVar("elementwise_" + type + "-Out", nvinfer1::Dims3(10, 3, 3)); // Prepare Op description framework::OpDesc desc; desc.SetType("elementwise_" + type); desc.SetInput("X", {"elementwise_" + type + "-X"}); desc.SetInput("Y", {"elementwise_" + type + "-Y"}); desc.SetOutput("Out", {"elementwise_" + type + "-Out"}); int axis = -1; desc.SetAttr("axis", axis); validator.SetOp(*desc.Proto()); validator.Execute(batch_size); } } TEST(elementwise_op, plugin) { for (std::string type : {"add", "mul"}) { int batch_size = 8; std::unordered_set parameters; framework::Scope scope; TRTConvertValidation validator(batch_size, parameters, scope, 1 << 15); validator.DeclInputVar("elementwise_" + type + "-X", nvinfer1::Dims3(10, 3, 3)); validator.DeclInputVar("elementwise_" + type + "-Y", nvinfer1::Dims3(10, 1, 1)); validator.DeclOutputVar("elementwise_" + type + "-Out", nvinfer1::Dims3(10, 3, 3)); // Prepare Op description framework::OpDesc desc; desc.SetType("elementwise_" + type); desc.SetInput("X", {"elementwise_" + type + "-X"}); desc.SetInput("Y", {"elementwise_" + type + "-Y"}); desc.SetOutput("Out", {"elementwise_" + type + "-Out"}); int axis = -1; desc.SetAttr("axis", axis); validator.SetOp(*desc.Proto()); validator.Execute(batch_size); } } } // namespace tensorrt } // namespace inference } // namespace paddle USE_OP(elementwise_add); USE_OP(elementwise_mul);