# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import argparse import re from api_gen import ForwardAPI class SparseAPI(ForwardAPI): def __init__(self, api_item_yaml): super(SparseAPI, self).__init__(api_item_yaml) def get_api_func_name(self): return self.api def gene_api_declaration(self): return f""" // {", ".join(self.outputs['names'])} PADDLE_API {self.outputs['return_type']} {self.get_api_func_name()}({self.args_str['args_declare']}); """ def get_kernel_tensor_out_type(self, output_name): sparse_type = 'TensorType::DENSE_TENSOR' if output_name.endswith('@SparseCooTensor'): sparse_type = 'TensorType::SPARSE_COO' elif output_name.endswith('@SparseCsrTensor'): sparse_type = 'TensorType::SPARSE_CSR' return sparse_type def gene_output(self, output_type_list, set_out_func, code_indent, inplace_flag=False): kernel_output = "" output_names = [] output_create = "" if len(output_type_list) == 1: kernel_output = 'kernel_out' output_names.append('kernel_out') inplace_assign = " = " + self.inplace_map[self.outputs['names'][ 0]] if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][0] in self.inplace_map else "" output_create = f""" {self.outputs['return_type']} api_output{inplace_assign}; auto* kernel_out = {set_out_func}(&api_output, {self.get_kernel_tensor_out_type(self.outputs['names'][0])});""" elif len(output_type_list) > 1: output_create = f""" {self.outputs['return_type']} api_output;""" for i in range(len(output_type_list)): kernel_output = kernel_output + f'kernel_out_{i}, ' output_names.append(f'kernel_out_{i}') if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][i] in self.inplace_map: output_create = output_create + f""" std::get<{i}>(api_output) = {self.inplace_map[self.outputs['names'][i]]};""" output_create = output_create + f""" auto* kernel_out_{i} = {set_out_func}(&std::get<{i}>(api_output), {self.get_kernel_tensor_out_type(self.outputs['names'][i])});""" kernel_output = kernel_output[:-2] else: raise ValueError( "{} : Output error: the output should not be empty.".format( self.api)) return kernel_output, output_names, output_create def gen_sparse_kernel_context(self, kernel_output_names): input_trans_map = { 'const Tensor&': 'const phi::TenseBase&', 'const std::vector&': 'const std::vector&', 'const paddle::optional&': 'paddle::optional' } out_trans_map = { 'Tensor': 'phi::TenseBase*', 'std::vector': 'std::vector' } input_names = self.inputs['names'] input_infos = self.inputs['input_info'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names kernel_context_code = "" for param in kernel_param: if param in input_names: if param in self.optional_vars: raise ValueError( f"{self.api} : Unsupport optional input({param}) for sparse api." ) else: kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackInput({param}.impl().get());""" continue if param in attr_names: # set attr for kernel_context if 'ScalarArray' in self.attrs['attr_info'][param][0]: param = 'phi::ScalarArray(' + param + ')' elif 'Scalar' in self.attrs['attr_info'][param][0]: param = 'phi::Scalar(' + param + ')' elif isinstance(param, bool): param = str(param).lower() else: param + str(param) + ", " kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackAttr({param});""" for out_name in kernel_output_names: kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackOutput({out_name});""" return kernel_context_code def gen_sparse_kernel_code(self, inplace_flag=False): _, kernel_output_names, output_create = self.gene_output( self.outputs['types'], 'SetSparseKernelOutput', '', inplace_flag) kernel_context_code = self.gen_sparse_kernel_context( kernel_output_names) return f""" auto phi_kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); auto kernel_context = phi::KernelContext(dev_ctx); {output_create} {kernel_context_code} phi_kernel(&kernel_context); return api_output;""" def gene_base_api_code(self, inplace_flag=False): api_func_name = self.get_api_func_name() return f""" PADDLE_API {self.outputs['return_type']} {api_func_name}({self.args_str["args_define"]}) {{ {self.gene_kernel_select()} {self.gen_sparse_kernel_code(inplace_flag)} }} """ def header_include(): return """ #include #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/scalar_array.h" #include "paddle/utils/optional.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include #include "glog/logging.h" #include "paddle/phi/api/lib/api_registry.h" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/api/lib/data_transform.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/api/lib/sparse_api_custom_impl.h" #include "paddle/phi/core/kernel_registry.h" """ def api_register(): return "" def api_namespace(): return (""" namespace paddle { namespace experimental { namespace sparse { """, """ } // namespace sparse } // namespace experimental } // namespace paddle """) def generate_api(api_yaml_path, header_file_path, source_file_path): with open(api_yaml_path, 'r') as f: apis = yaml.load(f, Loader=yaml.FullLoader) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/phi/api/include/sparse_api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for api in apis: sparse_api = SparseAPI(api) header_file.write(sparse_api.gene_api_declaration()) source_file.write(sparse_api.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) source_file.write(api_register()) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ Sparse API files') parser.add_argument( '--api_yaml_path', help='path to sparse api yaml file', default='python/paddle/utils/code_gen/sparse_api.yaml') parser.add_argument( '--api_header_path', help='output of generated api header code file', default='paddle/phi/api/include/sparse_api.h') parser.add_argument( '--api_source_path', help='output of generated api source code file', default='paddle/phi/api/lib/sparse_api.cc') options = parser.parse_args() api_yaml_path = options.api_yaml_path header_file_path = options.api_header_path source_file_path = options.api_source_path generate_api(api_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()