// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/operators/activation_op.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template using EigenScalar = framework::EigenScalar; template using EigenVector = framework::EigenVector; template class MeanCompute : public KernelLite { public: using param_t = operators::MeanParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.x86_device_context); param.Out->template mutable_data(); auto X = EigenVector::Flatten(param.X->raw_tensor()); auto y = EigenScalar::From(param.Out->raw_tensor()); const auto& place = *(context.x86_device_context->eigen_device()); y.device(place) = X.mean(); } virtual ~MeanCompute() = default; }; template class MeanGradCompute : public KernelLite { public: using param_t = operators::MeanGradParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK_EQ(param.Out_grad->raw_tensor().numel(), 1); CHECK(context.x86_device_context); param.X_grad->template mutable_data(); T x_grad_size = static_cast(param.X_grad->raw_tensor().numel()); Eigen::DSizes bcast(static_cast(x_grad_size)); EigenVector::Flatten(param.X_grad->raw_tensor()) .device(*(context.x86_device_context->eigen_device())) = (EigenVector::From(param.Out_grad->raw_tensor()) / x_grad_size) .broadcast(bcast); } virtual ~MeanGradCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle // float REGISTER_LITE_KERNEL(mean, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::MeanCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize(); REGISTER_LITE_KERNEL(mean_grad, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::MeanGradCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput(paddle::framework::GradVarName("Out"), {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput(paddle::framework::GradVarName("X"), {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();