/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/jit/more/mix/mix.h" #include "paddle/fluid/operators/jit/kernels.h" #include "paddle/fluid/operators/jit/registry.h" #include "paddle/fluid/platform/cpu_info.h" namespace paddle { namespace operators { namespace jit { namespace more { namespace mix { using CPUPlace = platform::CPUPlace; void VSigmoid(const T* x, T* y, int n) { const float min = SIGMOID_THRESHOLD_MIN; const float max = SIGMOID_THRESHOLD_MAX; for (int i = 0; i < n; ++i) { y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]); y[i] = static_cast(0) - y[i]; } auto compute = KernelFuncs, CPUPlace>::Cache().At(n); compute(y, y, n); for (int i = 0; i < n; ++i) { y[i] = static_cast(1) / (static_cast(1) + y[i]); } } void VTanh(const T* x, T* y, int n) { const T a = 2, b = -1; auto compute_scal = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_addbias = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_sigmoid = KernelFuncs, CPUPlace>::Cache().At(n); compute_scal(&a, x, y, n); compute_sigmoid(y, y, n); compute_scal(&a, y, y, n); compute_addbias(&b, y, y, n); } void Softmax(const T* x, T* y, int n, int bs) { auto compute_hmax = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_hsum = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_vscal = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_vaddbias = KernelFuncs, CPUPlace>::Cache().At(n); auto compute_vexp = KernelFuncs, CPUPlace>::Cache().At(n); for (int i = 0; i < bs; ++i) { T scalar; compute_hmax(x, &scalar, n); scalar = static_cast(0) - scalar; compute_vaddbias(&scalar, x, y, n); // x - max compute_vexp(y, y, n); compute_hsum(y, &scalar, n); scalar = static_cast(1) / scalar; compute_vscal(&scalar, y, y, n); x += n; y += n; } } void (*getActFunc(KernelType type, int d))(const T*, T*, int) { // NOLINT if (type == kVSigmoid) { return KernelFuncs, CPUPlace>::Cache().At(d); } else if (type == kVRelu) { return KernelFuncs, CPUPlace>::Cache().At(d); } else if (type == kVTanh) { return KernelFuncs, CPUPlace>::Cache().At(d); } else if (type == kVIdentity) { return KernelFuncs, CPUPlace>::Cache().At(d); } PADDLE_THROW("Not support type: %s", type); return nullptr; } void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); const T* ct_1 = reinterpret_cast(step->ct_1); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); const T* wp = reinterpret_cast(step->wp); T* checked = reinterpret_cast(step->checked); const int d = attr->d; const int d2 = d * 2; const int d3 = d * 3; auto vmul_d = KernelFuncs, CPUPlace>::Cache().At(d); auto vadd_d = KernelFuncs, CPUPlace>::Cache().At(d); auto vadd_d2 = KernelFuncs, CPUPlace>::Cache().At(d2); auto act_gate_d = getActFunc(attr->act_gate, d); auto act_gate_d2 = getActFunc(attr->act_gate, d2); auto act_gate_d3 = getActFunc(attr->act_gate, d3); auto act_cand_d = getActFunc(attr->act_cand, d); auto act_cell_d = getActFunc(attr->act_cell, d); if (attr->use_peephole) { vmul_d(wp, ct_1, checked, d); vmul_d(wp + d, ct_1, checked + d, d); vadd_d2(checked, gates + d, gates + d, d2); act_gate_d2(gates + d, gates + d, d2); } else { act_gate_d3(gates + d, gates + d, d3); } // C_t = C_t-1 * fgated + cand_gated * igated act_cand_d(gates, gates, d); vmul_d(gates, gates + d, gates + d, d); vmul_d(ct_1, gates + d2, gates + d2, d); vadd_d(gates + d, gates + d2, ct, d); if (attr->use_peephole) { // get ogated vmul_d(wp + d2, ct, gates + d, d); vadd_d(gates + d, gates + d3, gates + d3, d); act_gate_d(gates + d3, gates + d3, d); } // H_t = act_cell(C_t) * ogated act_cell_d(ct, gates + d2, d); vmul_d(gates + d2, gates + d3, ht, d); } void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); int d = attr->d; int d2 = d * 2; int d3 = d * 3; auto vmul_d = KernelFuncs, CPUPlace>::Cache().At(d); auto vadd_d = KernelFuncs, CPUPlace>::Cache().At(d); auto act_gate_d = getActFunc(attr->act_gate, d); auto act_cand_d = getActFunc(attr->act_cand, d); auto act_cell_d = getActFunc(attr->act_cell, d); /* C_t = igated * cgated*/ act_gate_d(gates + d, gates + d, d); act_cand_d(gates, gates, d); vmul_d(gates, gates + d, ct, d); if (attr->use_peephole) { // get outgated, put W_oc * C_t on igated const T* wp = reinterpret_cast(step->wp); vmul_d(wp + d2, ct, gates + d, d); vadd_d(gates + d, gates + d3, gates + d3, d); } /* H_t = act_cell(C_t) * ogated */ act_gate_d(gates + d3, gates + d3, d); act_cell_d(ct, gates + d2, d); vmul_d(gates + d2, gates + d3, ht, d); } // compute h1 without h0 void GRUH1(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); int d = attr->d; int d2 = d * 2; auto act_gate = getActFunc(attr->act_gate, d); auto act_cand = getActFunc(attr->act_cand, d); auto vmul_d = KernelFuncs, CPUPlace>::Cache().At(d); act_gate(gates, gates, d); act_cand(gates + d2, gates + d2, d); vmul_d(gates, gates + d2, ht, d); } // compute the first part of GRU: ht = act_gate(r) * ht_1 void GRUHtPart1(gru_t* step, const gru_attr_t* attr) { // W: {W_update, W_reset; W_state} T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); auto act_gate = getActFunc(attr->act_gate, attr->d); auto vmul_d = KernelFuncs, CPUPlace>::Cache().At(attr->d); act_gate(gates + attr->d, gates + attr->d, attr->d); vmul_d(ht_1, gates + attr->d, ht, attr->d); } // compute the second part of GRU: // ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1 void GRUHtPart2(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); int d = attr->d; auto act_gate = getActFunc(attr->act_gate, d); auto act_cand = getActFunc(attr->act_cand, d); T* y = gates + d * 2; act_gate(gates, gates, d); act_cand(y, y, d); // out = zt*ht~ + (1-zt)*ht_1 for (int i = 0; i < d; ++i) { ht[i] = gates[i] * y[i] + (static_cast(1) - gates[i]) * ht_1[i]; } } // TODO(TJ): tuning me bool VSigmoidKernel::CanBeUsed(const int& d) const { return true; } bool VTanhKernel::CanBeUsed(const int& d) const { return true; } bool SoftmaxKernel::CanBeUsed(const int& d) const { return true; } bool LSTMCtHtKernel::CanBeUsed(const lstm_attr_t& attr) const { return true; } bool LSTMC1H1Kernel::CanBeUsed(const lstm_attr_t& attr) const { return true; } bool GRUH1Kernel::CanBeUsed(const gru_attr_t& attr) const { return true; } bool GRUHtPart1Kernel::CanBeUsed(const gru_attr_t& attr) const { return true; } bool GRUHtPart2Kernel::CanBeUsed(const gru_attr_t& attr) const { return true; } } // namespace mix } // namespace more } // namespace jit } // namespace operators } // namespace paddle namespace mix = paddle::operators::jit::more::mix; #define REGISTER_MORE_KERNEL(func) \ REGISTER_JITKERNEL_MORE(k##func, mix, mix::func##Kernel) REGISTER_MORE_KERNEL(VSigmoid); REGISTER_MORE_KERNEL(VTanh); REGISTER_MORE_KERNEL(Softmax); REGISTER_MORE_KERNEL(LSTMCtHt); REGISTER_MORE_KERNEL(LSTMC1H1); REGISTER_MORE_KERNEL(GRUH1); REGISTER_MORE_KERNEL(GRUHtPart1); REGISTER_MORE_KERNEL(GRUHtPart2); #undef REGISTER_MORE_KERNEL