# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import unittest from multiprocessing import Process import numpy import paddle.fluid as fluid import paddle.fluid.layers as layers class TestSendOp(unittest.TestCase): @unittest.skip( "This test is buggy. We cannot use time.sleep to sync processes, the connection may fail in unittest." ) def test_send(self): # Run init_serv in a thread place = fluid.CPUPlace() # NOTE: python thread will not work here due to GIL. p = Process(target=self.init_serv, args=(place, )) p.daemon = True p.start() time.sleep(10) with open("/tmp/paddle.%d.port" % p.pid, "r") as fn: selected_port = int(fn.readlines()[0]) self.init_client(place, selected_port) self.run_local(place) self.assertTrue(numpy.allclose(self.local_out, self.dist_out)) # FIXME(typhoonzero): find a way to gracefully shutdown the server. os.system("kill -9 %d" % p.pid) p.join() def init_serv(self, place): main = fluid.Program() with fluid.program_guard(main): serv = layers.ListenAndServ( "127.0.0.1:0", ["X"], optimizer_mode=False) with serv.do(): out_var = main.global_block().create_var( name="scale_0.tmp_0", psersistable=True, dtype="float32", shape=[32, 32]) x = layers.data( shape=[32, 32], dtype='float32', name="X", append_batch_size=False) fluid.initializer.Constant(value=1.0)(x, main.global_block()) layers.scale(x=x, scale=10.0, out=out_var) self.server_exe = fluid.Executor(place) self.server_exe.run(main) def init_client(self, place, port): main = fluid.Program() with fluid.program_guard(main): x = layers.data( shape=[32, 32], dtype='float32', name='X', append_batch_size=False) fluid.initializer.Constant(value=2.3)(x, main.global_block()) get_var = main.global_block().create_var( name="scale_0.tmp_0", # server side var dtype="float32", persistable=False, shape=[32, 32]) o = layers.Send("127.0.0.1:%d" % port, [x], [get_var]) exe = fluid.Executor(place) self.dist_out = exe.run(main, fetch_list=o) # o is a list def run_local(self, place): main = fluid.Program() with fluid.program_guard(main): x = layers.data( shape=[32, 32], dtype='float32', name='X', append_batch_size=False) fluid.initializer.Constant(value=2.3)(x, main.global_block()) o = layers.scale(x=x, scale=10.0) exe = fluid.Executor(place) self.local_out = exe.run(main, fetch_list=[o]) if __name__ == "__main__": unittest.main()