/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/backward.h" #include #include "paddle/framework/op_registry.h" #include "paddle/operators/net_op.h" namespace paddle { namespace framework { static bool AllInSet(const std::vector& names, const std::string& suffix, const std::unordered_set& set) { for (auto& name : names) { if (set.find(name + suffix) == set.end()) { return false; } } return true; } static std::shared_ptr NOP() { auto net_op = std::make_shared(); net_op->type_ = "@NOP@"; net_op->CompleteAddOp(); return net_op; } // Get backward operator from a forward operator, recursively implementation. // // no_grad_names the gradient variable names without gradient calculating. // // uniq_id is a unique index used inside recursively calling // BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and // pass `uniq_id` through recursive calling. // // returns The backward operator. For simple situation, it is a simple // operator. For complex situation, it is a NetOp. // // See Backward.h for details static std::shared_ptr BackwardRecursive( const OperatorBase& forwardOp, std::unordered_set& no_grad_names, size_t& uniq_id); std::shared_ptr BackwardRecursive( const OperatorBase& forwardOp, std::unordered_set& no_grad_names, size_t& uniq_id) { // If all input gradients of forwarding operator do not need to calculate, // just return an NOP. Not return null ptr because NOP does not take // too much time for calculation, but it is useful for simplifying logic. if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) { return NOP(); } // All output gradients of forwarding operator do not need to calculate. // Then all input gradients cannot be computed at all, and we put them into // `no_grad_names` set. Return an NOP. if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) { for (auto& name : forwardOp.inputs_) { // Mark all input is not need no_grad_names.insert(name + kGradVarSuffix); } return NOP(); } // Returned gradient network auto net = std::make_shared(); if (forwardOp.IsNetOp()) { // Because forwardOp is a net op, it can static_cast. auto& forwardNet = static_cast(forwardOp); // Map from output gradient variable name to operator's indices in // backward net. That operator generates that variable. std::unordered_map> dup_output_ops; size_t local_op_id = 0; // reversely travel forwardNet for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend(); ++it, ++local_op_id) { auto fwd = *it; auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id); net->AddOp(bwd); for (auto& out : bwd->outputs_) { dup_output_ops[out].emplace_back(local_op_id); } } // Get unique ID for this method. auto uid = uniq_id++; // TODO(dzh): more comment using Pos = std::pair>; std::list insert_position; for (auto& dup_output_op : dup_output_ops) { const std::string& name = dup_output_op.first; auto& dup_op = dup_output_op.second; if (dup_op.size() == 1) continue; std::vector dup_outputs; for (size_t i = 0; i < dup_op.size(); ++i) { auto op_offset = dup_op[i]; dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" + std::to_string(i)); net->ops_[op_offset]->Rename(name, dup_outputs.back()); } insert_position.push_back( {dup_op.back(), OpRegistry::CreateOp( "add", {dup_outputs}, {name}, {{"input_format", std::vector{0, static_cast(dup_outputs.size())}}})}); } insert_position.sort( [](const Pos& l, const Pos& r) { return l.first > r.first; }); for (auto& pos : insert_position) { net->InsertOp(pos.first + 1, pos.second); } } else { std::shared_ptr grad_op = OpRegistry::CreateGradOp(forwardOp); for (std::string& grad_input : grad_op->inputs_) { if (no_grad_names.count(grad_input)) { // +1 for \0 std::string prefix = grad_input.substr( 0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1); grad_input = prefix + kZeroVarSuffix; // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix}, {grad_input}, {})); } } for (std::string& grad_output : grad_op->outputs_) { if (no_grad_names.count(grad_output)) { grad_output = kEmptyVarName; } } if (net->ops_.empty()) { // Current no aux op is added to network return grad_op; } net->AddOp(grad_op); } net->type_ = "@GENERATED_BACKWARD@"; net->CompleteAddOp(); return net; } // See header for comments std::shared_ptr Backward( const OperatorBase& forwardOp, const std::unordered_set& no_grad_vars) { std::unordered_set no_grad_names; no_grad_names.reserve(no_grad_vars.size()); no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix); for (auto& name : no_grad_vars) { no_grad_names.insert(name + kGradVarSuffix); } size_t uid = 0; return BackwardRecursive(forwardOp, no_grad_names, uid); } } // namespace framework } // namespace paddle