/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/math/cross_entropy.h" namespace paddle { namespace operators { namespace math { namespace { template __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, const int N, const int D) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { PADDLE_ASSERT(label[i] >= 0 && label[i] < D); Y[i] = -math::TolerableValue()(log(X[i * D + label[i]])); } } template __device__ __forceinline__ T sum_single_warp(T val) { val += __shfl_down(val, 16); val += __shfl_down(val, 8); val += __shfl_down(val, 4); val += __shfl_down(val, 2); val += __shfl_down(val, 1); return val; } template __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, const int class_num) { int tid = threadIdx.x; extern __shared__ T d_sum[]; d_sum[tid] = 0; int cur_idx = tid; int next_idx = blockIdx.x * class_num + tid; while (cur_idx < class_num) { d_sum[tid] += math::TolerableValue()(std::log(X[next_idx])) * label[next_idx]; next_idx += blockDim.x; cur_idx += blockDim.x; } __syncthreads(); for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) { if (tid < stride) d_sum[tid] += d_sum[tid + stride]; __syncthreads(); } T val = d_sum[tid]; val = sum_single_warp(val); if (tid == 0) Y[blockIdx.x] = -val; } } // namespace using Tensor = framework::Tensor; template class CrossEntropyFunctor { public: void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, const framework::Tensor* prob, const framework::Tensor* labels, bool softLabel) { const T* prob_data = prob->data(); T* loss_data = out->mutable_data(ctx.GetPlace()); int batch_size = prob->dims()[0]; int class_num = prob->dims()[1]; if (softLabel) { const T* label_data = labels->data(); int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num))); SoftCrossEntropyKernel<<< batch_size, block, block * sizeof(T), reinterpret_cast(ctx).stream()>>>( loss_data, prob_data, label_data, class_num); } else { const int* label_data = labels->data(); int block = 512; int grid = (batch_size + block - 1) / block; CrossEntropyKernel<<< grid, block, 0, reinterpret_cast(ctx).stream()>>>( loss_data, prob_data, label_data, batch_size, class_num); } } }; template class CrossEntropyFunctor; } // namespace math } // namespace operators } // namespace paddle