// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h" #include #include "paddle/fluid/framework/lod_tensor.h" namespace paddle { namespace framework { namespace ir { int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope, bool with_fc_bias) { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); // Build pattern PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x")) ->assert_is_op_input("mul") ->assert_var_not_persistable(); patterns::FC fc_pattern(pattern, name_scope); // fc_out is a tmp var, will be removed after fuse, so marked as intermediate. auto* fc_out = fc_pattern(x, with_fc_bias)->AsIntermediate(); patterns::LSTM lstm_pattern(pattern, name_scope); lstm_pattern(fc_out); // Create New OpDesc auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x, Node* weight_h, Node* bias, Node* hidden, Node* cell, Node* xx, Node* fc_bias) { OpDesc op_desc; op_desc.SetType("fusion_lstm"); #define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()}); SET_IN(X, input); SET_IN(WeightX, weight_x); SET_IN(WeightH, weight_h); SET_IN(Bias, bias); #undef SET_IN if (with_fc_bias) { // Add FC-bias with LSTM-bias and create a new weight PADDLE_ENFORCE(scope); const std::string& new_bias_var = patterns::UniqueKey("NewBias"); auto* bias_var = scope->Var(new_bias_var); PADDLE_ENFORCE(bias_var); auto* bias_tensor = bias_var->GetMutable(); auto* lstm_bias_var = scope->FindVar(bias->Name()); PADDLE_ENFORCE(lstm_bias_var); const auto& lstm_bias_tensor = lstm_bias_var->Get(); bias_tensor->Resize(lstm_bias_tensor.dims()); auto* fc_bias_var = scope->FindVar(fc_bias->Name()); const auto& fc_bias_tensor = fc_bias_var->Get(); auto* data = bias_tensor->mutable_data(platform::CPUPlace()); for (int i = 0; i < bias_tensor->numel(); i++) { data[i] = fc_bias_tensor.data()[i] + lstm_bias_tensor.data()[i]; } op_desc.SetInput("Bias", {new_bias_var}); } // Create temp variables. const std::string BatchedInput = patterns::UniqueKey("BatchedInput"); const std::string BatchedCellPreAct = patterns::UniqueKey("BatchedCellPreAct"); const std::string BatchedGate = patterns::UniqueKey("BatchedGate"); scope->Var(BatchedInput)->GetMutable(); scope->Var(BatchedCellPreAct)->GetMutable(); scope->Var(BatchedGate)->GetMutable(); op_desc.SetInput("H0", {}); op_desc.SetInput("C0", {}); op_desc.SetOutput("Hidden", {hidden->Name()}); op_desc.SetOutput("Cell", {cell->Name()}); op_desc.SetOutput("XX", {xx->Name()}); op_desc.SetOutput("BatchedGate", {BatchedGate}); op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct}); op_desc.SetOutput("BatchedInput", {BatchedInput}); op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse")); op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes")); // TODO(TJ): get from attr op_desc.SetAttr("use_seq", true); PADDLE_ENFORCE(graph->Has(kParamScopeAttr)); auto* scope = graph->Get(kParamScopeAttr); #define OP_SET_OUT(x) \ const std::string x = patterns::UniqueKey(#x); \ op_desc.SetOutput(#x, {x}); \ scope->Var(x)->GetMutable() OP_SET_OUT(BatchedCell); OP_SET_OUT(BatchedHidden); OP_SET_OUT(ReorderedH0); OP_SET_OUT(ReorderedC0); #undef OP_SET_OUT auto* op = graph->CreateOpNode(&op_desc); IR_NODE_LINK_TO(input, op); IR_NODE_LINK_TO(weight_x, op); IR_NODE_LINK_TO(weight_h, op); IR_NODE_LINK_TO(bias, op); IR_NODE_LINK_TO(op, hidden); return op; }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern); GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern); GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern); GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern); GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern); GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); if (with_fc_bias) { GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out, fc_bias); // Remove unneeded nodes. std::unordered_set marked_nodes( {mul, lstm, elementwise_add, fc_bias}); GraphSafeRemoveNodes(graph, marked_nodes); } else { GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern); lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out, nullptr); // Remove unneeded nodes. std::unordered_set marked_nodes({mul, lstm}); GraphSafeRemoveNodes(graph, marked_nodes); } ++fusion_count; }; gpd(graph, handler); return fusion_count; } std::unique_ptr MulLstmFusePass::ApplyImpl( std::unique_ptr graph) const { FusePassBase::Init(name_scope_, graph.get()); int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(), false /*with_fc_bias*/); AddStatis(fusion_count); return graph; } std::unique_ptr FCLstmFusePass::ApplyImpl( std::unique_ptr graph) const { FusePassBase::Init(name_scope_, graph.get()); int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(), true /*with_fc_bias*/); AddStatis(fusion_count); return graph; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass); REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);