/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/norm_utils.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DataLayout = framework::DataLayout; template using EigenArrayMap = Eigen::Map>; template using ConstEigenArrayMap = Eigen::Map>; template using EigenVectorArrayMap = Eigen::Map>; template using ConstEigenVectorArrayMap = Eigen::Map>; template inline void ResizeToChannelFirst(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[4]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; in_dims_vec[4] = input->dims()[3]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } else if (dim == 2) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[3]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } else if (dim == 1) { transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[2]; in_dims_vec[2] = input->dims()[1]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } } template inline void TransToChannelFirst(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 4, 1, 2, 3}; math::Transpose trans5; trans5(dev_ctx, *input, transformed_input, axis); } else if (dim == 2) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 3, 1, 2}; math::Transpose trans4; trans4(dev_ctx, *input, transformed_input, axis); } else if (dim == 1) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 1}; math::Transpose trans3; trans3(dev_ctx, *input, transformed_input, axis); } } template inline void TransToChannelLast(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 3, 4, 1}; math::Transpose trans5; trans5(dev_ctx, *input, transformed_input, axis); } else if (dim == 2) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 3, 1}; math::Transpose trans4; trans4(dev_ctx, *input, transformed_input, axis); } else if (dim == 1) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 1}; math::Transpose trans3; trans3(dev_ctx, *input, transformed_input, axis); } } class BatchNormOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const override; }; class BatchNormGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const override; }; class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override; }; template class BatchNormGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: std::unique_ptr Apply() const override; }; class BatchNormOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map GetInputOutputWithSameType() const override { return std::unordered_map{{"X", /*->*/ "Y"}}; } }; template class BatchNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; }; template class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; }; } // namespace operators } // namespace paddle