// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "glog/logging.h" #include "gtest/gtest.h" #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h" #include "paddle/fluid/eager/api/utils/tensor_utils.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/backward.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/tests/test_utils.h" #include "paddle/fluid/eager/api/all.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/core/kernel_registry.h" PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT); PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT); PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT); namespace egr { TEST(Backward, SingleNodeEmptyGrad) { // Prepare Device Contexts eager_test::InitEnv(paddle::platform::CPUPlace()); // Prepare Inputs paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); // Create Target Tensor paddle::experimental::Tensor target_tensor = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); paddle::experimental::Tensor leaf_tensor; { // Create Scale Node auto node0_ptr = std::make_shared(1, 1); node0_ptr->SetAttributes_scale(5.0 /*scale*/); // Set grad in/out meta node0_ptr->SetDefaultGradInOutMeta(); AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&target_tensor); auto_grad_meta->SetGradNode( std::dynamic_pointer_cast(node0_ptr)); auto_grad_meta->SetSingleOutRankWithSlot(0, 0); auto_grad_meta->SetStopGradient(false); AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor); // Connect Tensor and AccumulationNode via AutoGradMeta auto acc_node_ptr = std::make_shared(auto_grad_meta1); auto_grad_meta1->SetGradNode( std::dynamic_pointer_cast(acc_node_ptr)); auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); auto_grad_meta1->SetStopGradient(false); std::vector res = {auto_grad_meta1}; node0_ptr->AddEdges(&res, 0); } std::vector outs = {target_tensor}; // Run Backward Backward(outs, {}); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 5.0); } TEST(Backward, SingleNodeCustomGrad) { // Prepare Device Contexts eager_test::InitEnv(paddle::platform::CPUPlace()); // Prepare Inputs std::vector target_tensors; paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); // Create Target Tensor paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); target_tensors.emplace_back(std::move(tensor)); std::vector grad_tensors; // Create Grad Tensor paddle::experimental::Tensor grad_tensor = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/); grad_tensors.emplace_back(std::move(grad_tensor)); paddle::experimental::Tensor leaf_tensor; { // Create Scale Node auto node0_ptr = std::make_shared(1, 1); node0_ptr->SetAttributes_scale(5.0 /*scale*/); // Set grad in/out meta node0_ptr->SetDefaultGradInOutMeta(); // Connect Tensor and Node via AutoGradMeta AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&(target_tensors[0])); auto_grad_meta->SetGradNode( std::dynamic_pointer_cast(node0_ptr)); auto_grad_meta->SetSingleOutRankWithSlot(0, 0); auto_grad_meta->SetStopGradient(false); AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor); // Connect Tensor and AccumulationNode via AutoGradMeta auto acc_node_ptr = std::make_shared(auto_grad_meta1); auto_grad_meta1->SetGradNode( std::dynamic_pointer_cast(acc_node_ptr)); auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); auto_grad_meta1->SetStopGradient(false); std::vector res = {auto_grad_meta1}; node0_ptr->AddEdges(&res, 0); } // Run Backward Backward(target_tensors, grad_tensors); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 50.0); } /* Node1 | Node0 | inp0 */ TEST(Backward, LinearNodes) { // Prepare Device Contexts eager_test::InitEnv(paddle::platform::CPUPlace()); // Prepare Inputs std::vector target_tensors; paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); // Create Target Tensor paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); target_tensors.emplace_back(std::move(tensor)); paddle::experimental::Tensor leaf_tensor; { // Create Node0 auto node0_ptr = std::make_shared(1, 1); node0_ptr->SetAttributes_scale(5.0 /*scale*/); // Set grad in/out meta for node0 node0_ptr->SetDefaultGradInOutMeta(); // Create Node1 auto node1_ptr = std::make_shared(1, 1); node1_ptr->SetAttributes_scale(10.0 /*scale*/); // Set grad in/out meta for node1 node1_ptr->SetDefaultGradInOutMeta(); // Connect Input Tensor and Node0 via AutoGradMeta AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&(target_tensors[0])); auto_grad_meta->SetGradNode( std::dynamic_pointer_cast(node0_ptr)); auto_grad_meta->SetSingleOutRankWithSlot(0, 0); auto_grad_meta->SetStopGradient(false); // Connect Node0 -> Node1 via Edge auto meta0 = egr::AutogradMeta(); meta0.SetStopGradient(false); meta0.SetSingleOutRankWithSlot(0, 0); meta0.SetGradNode(node1_ptr); std::vector res0 = {&meta0}; node0_ptr->AddEdges(&res0, 0); AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor); // Connect Tensor and AccumulationNode via AutoGradMeta auto acc_node_ptr = std::make_shared(auto_grad_meta1); auto_grad_meta1->SetGradNode( std::dynamic_pointer_cast(acc_node_ptr)); auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); auto_grad_meta1->SetStopGradient(false); std::vector res1 = {auto_grad_meta1}; node1_ptr->AddEdges(&res1, 0); } // Use Empty Grad Tensor Backward(target_tensors, {}); // Check Output Value eager_test::CompareGradTensorWithValue(leaf_tensor, 50.0); } /* Node2 | | Node0 Node1 | | inp0 inp1 */ TEST(Backward, WithAccumulation) { // Prepare Device Contexts eager_test::InitEnv(paddle::platform::CPUPlace()); // Prepare Inputs paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); // Create Target Tensor std::vector target_tensors; paddle::experimental::Tensor tensor0 = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); paddle::experimental::Tensor tensor1 = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/); target_tensors.emplace_back(std::move(tensor0)); target_tensors.emplace_back(std::move(tensor1)); // Create Grad Tensor std::vector grad_tensors; paddle::experimental::Tensor grad_tensor0 = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, false /*is_leaf*/); paddle::experimental::Tensor grad_tensor1 = egr_utils_api::CreateTensorWithValue( ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/); grad_tensors.emplace_back(std::move(grad_tensor0)); grad_tensors.emplace_back(std::move(grad_tensor1)); paddle::experimental::Tensor leaf_tensor; { // Create Node0 auto node0_ptr = std::make_shared(1, 1); node0_ptr->SetAttributes_scale(5.0 /*scale*/); node0_ptr->SetDefaultGradInOutMeta(); // Create Node1 auto node1_ptr = std::make_shared(1, 1); node1_ptr->SetAttributes_scale(10.0 /*scale*/); node1_ptr->SetDefaultGradInOutMeta(); // Create Node2 auto node2_ptr = std::make_shared(1, 1); node2_ptr->SetAttributes_scale(20.0 /*scale*/); node2_ptr->SetDefaultGradInOutMeta(); // Connect Inp0 and Node0 via AutoGradMeta AutogradMeta* auto_grad_meta0 = EagerUtils::autograd_meta(&(target_tensors[0])); auto_grad_meta0->SetGradNode( std::dynamic_pointer_cast(node0_ptr)); auto_grad_meta0->SetSingleOutRankWithSlot(0, 0); auto_grad_meta0->SetStopGradient(false); // Connect Inp1 and Node1 via AutoGradMeta AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&(target_tensors[1])); auto_grad_meta1->SetGradNode( std::dynamic_pointer_cast(node1_ptr)); auto_grad_meta1->SetSingleOutRankWithSlot(0, 0); auto_grad_meta1->SetStopGradient(false); // Connect Node0 -> Node2 via Edge auto meta0 = egr::AutogradMeta(); meta0.SetStopGradient(false); meta0.SetSingleOutRankWithSlot(0, 0); meta0.SetGradNode(node2_ptr); std::vector res0 = {&meta0}; node0_ptr->AddEdges(&res0, 0); // Connect Node1 -> Node2 via Edge auto meta1 = egr::AutogradMeta(); meta1.SetStopGradient(false); meta1.SetSingleOutRankWithSlot(0, 0); meta1.SetGradNode(node2_ptr); std::vector res1 = {&meta1}; node1_ptr->AddEdges(&res1, 0); AutogradMeta* auto_grad_meta2 = EagerUtils::autograd_meta(&leaf_tensor); // Connect Tensor and AccumulationNode via AutoGradMeta auto acc_node_ptr = std::make_shared(auto_grad_meta2); auto_grad_meta2->SetGradNode( std::dynamic_pointer_cast(acc_node_ptr)); auto_grad_meta2->SetSingleOutRankWithSlot(0, 0); auto_grad_meta2->SetStopGradient(false); std::vector res2 = {auto_grad_meta2}; node2_ptr->AddEdges(&res2, 0); } Backward(target_tensors, grad_tensors); eager_test::CompareGradTensorWithValue(leaf_tensor, 2500.0); } } // namespace egr