// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h" #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h" namespace paddle { namespace inference { namespace tensorrt { namespace plugin { SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) { return new SplitPlugin(buffer, length); } REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize); template __device__ int upper_bound(T const* vals, int n, T const& key) { int i = 0; while (n > 0) { int m = n / 2; int j = i + m; if (!(key < vals[j])) { i = j + 1; n -= m + 1; } else { n = m; } } return i; } nvinfer1::Dims SplitPlugin::getOutputDimensions( int index, const nvinfer1::Dims* input_dims, int num_inputs) { PADDLE_ENFORCE_EQ(num_inputs, 1); PADDLE_ENFORCE_LT(index, this->getNbOutputs()); nvinfer1::Dims output_dims = input_dims[0]; output_dims.d[axis_] = output_length_.at(index); return output_dims; } int SplitPlugin::initialize() { PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS); // notice input dims is [C, H, W] nvinfer1::Dims dims = this->getInputDims(0); outer_rows_ = 1; inner_cols_ = 1; for (int i = 0; i < axis_; ++i) { outer_rows_ *= dims.d[i]; } for (int i = axis_ + 1; i < dims.nbDims; ++i) { inner_cols_ *= dims.d[i]; } same_shape_ = true; std::vector segment_offsets(1, 0); for (int i = 0; i < this->getNbOutputs(); ++i) { if (output_length_[i] != output_length_[0]) { same_shape_ = false; } segment_offsets.push_back(segment_offsets.back() + output_length_[i]); } axis_shape_ = dims.d[axis_]; d_segment_offsets_ = segment_offsets; segment_offsets_ = std::move(segment_offsets); d_output_ptrs_.resize(this->getNbOutputs(), nullptr); return 0; } // The following part of the code refers to onnx-tensorrt // https://github.com/onnx/onnx-tensorrt/blob/master/Split.cu template __global__ void split_kernel(int nsegment, int const* __restrict__ segment_offsets, T const* __restrict__ idata, T* const* odatas, int inner_cols, int axis_shape, int outer_rows) { int x0 = threadIdx.x + blockIdx.x * blockDim.x; int src_y0 = threadIdx.y + blockIdx.y * blockDim.y; int z0 = threadIdx.z + blockIdx.z * blockDim.z; for (int z = z0; z < outer_rows; z += blockDim.z * gridDim.z) { for (int src_y = src_y0; src_y < axis_shape; src_y += blockDim.y * gridDim.y) { for (int x = x0; x < inner_cols; x += blockDim.x * gridDim.x) { int segment = upper_bound(segment_offsets, nsegment, src_y) - 1; int dst_y = src_y - segment_offsets[segment]; int dst_ny = segment_offsets[segment + 1] - segment_offsets[segment]; odatas[segment][x + inner_cols * (dst_y + dst_ny * z)] = idata[x + inner_cols * (src_y + axis_shape * z)]; } } } } int SplitPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) { const int* d_segment_offsets_ptr = thrust::raw_pointer_cast(&d_segment_offsets_[0]); float const* input_ptr = reinterpret_cast(inputs[0]); float* const* h_odatas = reinterpret_cast(outputs); float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]); PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, h_odatas, d_output_ptrs_.size() * sizeof(float*), cudaMemcpyHostToDevice, stream) == cudaSuccess); int outer_rows = outer_rows_ * batchSize; dim3 block(32, 16); dim3 grid(std::min((inner_cols_ - 1) / block.x + 1, 65535u), std::min((axis_shape_ - 1) / block.y + 1, 65535u), std::min((outer_rows_ - 1) / block.z + 1, 65535u)); split_kernel<<>>( d_segment_offsets_.size(), d_segment_offsets_ptr, input_ptr, output_ptrs, inner_cols_, axis_shape_, outer_rows); return cudaGetLastError() != cudaSuccess; } } // namespace plugin } // namespace tensorrt } // namespace inference } // namespace paddle