import py_paddle.swig_paddle as api import paddle.trainer.config_parser import numpy as np def init_parameter(network): assert isinstance(network, api.GradientMachine) for each_param in network.getParameters(): assert isinstance(each_param, api.Parameter) array = each_param.getBuf(api.PARAMETER_VALUE).toNumpyArrayInplace() assert isinstance(array, np.ndarray) for i in xrange(len(array)): array[i] = np.random.uniform(-1.0, 1.0) def main(): api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores config = paddle.trainer.config_parser.parse_config( 'simple_mnist_network.py', '') opt_config = api.OptimizationConfig.createFromProto(config.opt_config) _temp_optimizer_ = api.ParameterOptimizer.create(opt_config) enable_types = _temp_optimizer_.getParameterTypes() m = api.GradientMachine.createFromConfigProto( config.model_config, api.CREATE_MODE_NORMAL, enable_types) assert isinstance(m, api.GradientMachine) init_parameter(network=m) updater = api.ParameterUpdater.createLocalUpdater(opt_config) assert isinstance(updater, api.ParameterUpdater) updater.init(m) m.start() for _ in xrange(100): updater.startPass() updater.finishPass() m.finish() if __name__ == '__main__': main()