import paddle.v2 as paddle import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core import paddle.v2.fluid.optimizer as optimizer from paddle.v2.fluid.framework import Program from paddle.v2.fluid.io import save_inference_model, load_inference_model import paddle.v2.fluid.executor as executor import unittest import numpy as np class TestBook(unittest.TestCase): def test_fit_line_inference_model(self): MODEL_DIR = "./tmp/inference_model" init_program = Program() program = Program() x = layers.data( name='x', shape=[2], data_type='float32', main_program=program, startup_program=init_program) y = layers.data( name='y', shape=[1], data_type='float32', main_program=program, startup_program=init_program) y_predict = layers.fc(input=x, size=1, act=None, main_program=program, startup_program=init_program) cost = layers.square_error_cost( input=y_predict, label=y, main_program=program, startup_program=init_program) avg_cost = layers.mean( x=cost, main_program=program, startup_program=init_program) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) opts = sgd_optimizer.minimize(avg_cost, init_program) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) for i in xrange(100): x_data = np.array( [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32") y_data = np.array([[-2], [-3], [-7], [-7]]).astype("float32") tensor_x = core.LoDTensor() tensor_x.set(x_data, place) tensor_y = core.LoDTensor() tensor_y.set(y_data, place) exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]) save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program) outs = exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]) expected = np.array(outs[0]) reload(executor) # reload to build a new scope exe = executor.Executor(place) [infer_prog, feed_var_names, fetch_vars] = load_inference_model( MODEL_DIR, exe) outs = exe.run( infer_prog, feed={feed_var_names[0]: tensor_x, feed_var_names[1]: tensor_y}, fetch_list=fetch_vars) actual = np.array(outs[0]) self.assertEqual(feed_var_names, ["x", "y"]) self.assertEqual(len(fetch_vars), 1) self.assertEqual(str(fetch_vars[0]), str(avg_cost)) self.assertEqual(expected, actual) if __name__ == '__main__': unittest.main()