/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include // NOLINT #include // NOLINT #include #include "paddle/fluid/framework/init.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/operators/nccl/nccl_gpu_common.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/place.h" USE_NO_KERNEL_OP(ncclInit); USE_CUDA_ONLY_OP(ncclAllReduce); USE_CUDA_ONLY_OP(ncclReduce); USE_CUDA_ONLY_OP(ncclBcast); namespace f = paddle::framework; namespace p = paddle::platform; // test data amount const f::DDim kDims = {20, 20}; // nccl op common tester, init communicator. class NCCLTester : public ::testing::Test { public: void SetUp() override { int count = p::GetCUDADeviceCount(); if (count <= 1) { LOG(WARNING) << "Cannot test multi-gpu nccl, because the CUDA device count is " << count; exit(0); } for (int i = 0; i < count; ++i) { gpu_list_.emplace_back(i); } paddle::platform::CPUPlace cpu_place; for (size_t i = 0; i < gpu_list_.size(); ++i) { p::CUDAPlace place(i); dev_ctxs_.emplace_back(new p::CUDADeviceContext(place)); } NCCLInitOp(); } void TearDown() override { for (auto &device_context : dev_ctxs_) { delete device_context; } } void NCCLInitOp() { paddle::platform::CPUPlace cpu_place; std::unique_ptr op1(new f::OpDesc); op1->SetType("ncclInit"); op1->SetInput("parallel_scopes", {"p_scopes"}); op1->SetOutput("Communicator", {"comm"}); auto *var = g_scope_.Var("comm"); var->GetMutable(); auto *scope_var = g_scope_.Var("p_scopes"); auto *p_scopes = scope_var->GetMutable>(); (*p_scopes).resize(gpu_list_.size()); auto op = f::OpRegistry::CreateOp(*op1); VLOG(1) << "invoke NCCLInitOp."; op->Run(g_scope_, cpu_place); VLOG(1) << "NCCLInitOp finished."; } int GetGPUData(int gpu_id) { return gpu_id + 42; } template void PerThreadProgram(int gpu_id, const f::OpDesc &op_desc, f::Scope *scope) { std::unique_lock lk(mu_); const f::OpDesc *op1 = &op_desc; p::CUDAPlace place(gpu_id); auto &ctx = dev_ctxs_.at(gpu_id); auto *send_tensor = scope->Var("st")->GetMutable(); auto *recv_tensor = scope->Var("rt")->GetMutable(); if (!send_tensor->numel()) { send_tensor->mutable_data(kDims, place); std::vector send_vector(f::product(kDims), GetGPUData(gpu_id)); paddle::framework::TensorFromVector(send_vector, *ctx, send_tensor); VLOG(1) << "Send Tensor filled with elements " << send_tensor->numel(); } lk.unlock(); PADDLE_ENFORCE(send_tensor->numel() == f::product(kDims), "Tensor numel not match!"); auto op = f::OpRegistry::CreateOp(*op1); VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type(); VLOG(1) << " send_tensor : " << send_tensor->numel() << " recv_tensor : " << recv_tensor->numel(); op->Run(*scope, place); VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type(); } public: std::vector dev_ctxs_; f::Scope g_scope_; std::mutex mu_; std::vector gpu_list_; }; // ncclInitOp with desc TEST_F(NCCLTester, ncclInitOp) {} // ncclAllReduceOp with desc // TODO(helin): https://github.com/PaddlePaddle/Paddle/issues/9367 /* TEST_F(NCCLTester, ncclAllReduceOp) { std::unique_ptr op2(new f::OpDesc); op2->SetType("ncclAllReduce"); op2->SetInput("X", {"st"}); op2->SetInput("Communicator", {"comm"}); op2->SetOutput("Out", {"rt"}); std::vector dev_scopes; std::vector ths; for (size_t i = 0; i < gpu_list_.size(); ++i) { dev_scopes.emplace_back(&g_scope_.NewScope()); std::thread th(&NCCLTester::PerThreadProgram, this, gpu_list_[i], *op2.get(), dev_scopes[i]); ths.emplace_back(std::move(th)); } for (size_t i = 0; i < gpu_list_.size(); ++i) { ths[i].join(); } float expected_result = 0.0; for (int gpu_id : gpu_list_) { expected_result = expected_result + GetGPUData(gpu_id); } for (size_t i = 0; i < dev_scopes.size(); ++i) { p::CPUPlace cpu_place; p::CUDAPlace gpu_place(gpu_list_[i]); auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); auto *result_tensor = dev_scopes[i]->Var("ct")->GetMutable(); result_tensor->Resize(kDims); auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( cpu_place, ct, p::CUDAPlace(gpu_list_[i]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs_[i])->stream()); for (int64_t j = 0; j < f::product(kDims); ++j) { ASSERT_NEAR(ct[j], expected_result, 1e-5); } } } */ // ncclReduceOp with desc TEST_F(NCCLTester, ncclReduceOp) { std::unique_ptr op2(new f::OpDesc); const int kRoot = 0; op2->SetType("ncclReduce"); op2->SetInput("X", {"st"}); op2->SetInput("Communicator", {"comm"}); op2->SetOutput("Out", {"rt"}); op2->SetAttr("root", kRoot); std::vector dev_scopes; std::vector ths; for (size_t i = 0; i < gpu_list_.size(); ++i) { dev_scopes.emplace_back(&g_scope_.NewScope()); std::thread th(&NCCLTester::PerThreadProgram, this, gpu_list_[i], *op2.get(), dev_scopes[i]); ths.emplace_back(std::move(th)); } for (size_t i = 0; i < gpu_list_.size(); ++i) { ths[i].join(); } float expected_result = 0.0; for (int gpu_id : gpu_list_) { expected_result = expected_result + GetGPUData(gpu_id); } p::CPUPlace cpu_place; p::CUDAPlace gpu_place(gpu_list_[kRoot]); auto &recv_tensor = dev_scopes[kRoot]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); auto *result_tensor = dev_scopes[kRoot]->Var("ct")->GetMutable(); result_tensor->Resize(kDims); auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( cpu_place, ct, p::CUDAPlace(gpu_list_[kRoot]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs_[kRoot])->stream()); for (int64_t j = 0; j < f::product(kDims); ++j) { ASSERT_NEAR(ct[j], expected_result, 1e-5); } } // ncclBcastOp with desc // TODO(helin): https://github.com/PaddlePaddle/Paddle/issues/9540 /* TEST_F(NCCLTester, ncclBcastOp) { std::unique_ptr op2(new f::OpDesc); const int kRoot = 0; op2->SetType("ncclBcast"); op2->SetInput("X", {"st"}); op2->SetInput("Communicator", {"comm"}); op2->SetOutput("Out", {"rt"}); op2->SetAttr("root", kRoot); std::vector dev_scopes; std::vector ths; for (size_t i = 0; i < gpu_list_.size(); ++i) { dev_scopes.emplace_back(&g_scope_.NewScope()); std::thread th(&NCCLTester::PerThreadProgram, this, gpu_list_[i], *op2.get(), dev_scopes[i]); ths.emplace_back(std::move(th)); } for (size_t i = 0; i < gpu_list_.size(); ++i) { ths[i].join(); } const int idx = 1; float result = GetGPUData(kRoot); p::CPUPlace cpu_place; p::CUDAPlace gpu_place(gpu_list_[idx]); auto &recv_tensor = dev_scopes[idx]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); auto *result_tensor = dev_scopes[idx]->Var("ct")->GetMutable(); result_tensor->Resize(kDims); auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( cpu_place, ct, p::CUDAPlace(gpu_list_[idx]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs_[idx])->stream()); for (int64_t j = 0; j < f::product(kDims); ++j) { ASSERT_NEAR(ct[j], result, 1e-5); } } */