/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNConcatLayer.h" using namespace mkldnn; // NOLINT typedef memory::format format; namespace paddle { REGISTER_LAYER(mkldnn_concat, MKLDNNConcatLayer); bool MKLDNNConcatLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MKLDNNLayer::init(layerMap, parameterMap)) { return false; } CHECK_GT(inputLayers_.size(), 1UL); CHECK(!biasParameter_); return true; } void MKLDNNConcatLayer::reshape( int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); ic = inputLayers_[0]->getSize() / ih / iw; CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize()); CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw); CHECK_GT(inputLayers_.size(), 1UL); channels_.resize(inputLayers_.size()); channels_[0] = ic; oc = ic; for (size_t i = 1; i < inputLayers_.size(); i++) { int batchsize, height, witdh; reshapeInput(batchsize, height, witdh, i); CHECK_EQ(bs, batchsize); CHECK_EQ(ih, height); CHECK_EQ(iw, witdh); channels_[i] = inputLayers_[i]->getSize() / height / witdh; CHECK_EQ((size_t)channels_[i] * height * witdh, inputLayers_[i]->getSize()); oc += channels_[i]; } oh = ih; ow = iw; reshapeOutput(oh, ow); resizeOutput(bs, oc * oh * ow); } void MKLDNNConcatLayer::resetFwd(std::vector& pipeline, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { resetFwdBuffers(inVals_, out); in = inVals_[0]; std::shared_ptr fwdPD; resetFwdPD(fwdPD, inVals_, out); resetFwdPipeline(pipeline, fwdPD, inVals_, out); } void MKLDNNConcatLayer::resetBwd(std::vector& pipeline, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { resetBwdBuffers(inGrads_, out); in = inGrads_[0]; resetBwdPipeline(pipeline, bwds_, inGrads_, out); } void MKLDNNConcatLayer::resetFwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& out) { inputs.resize(inputLayers_.size()); bool has8c = false, has16c = false, hasnc = false; for (size_t i = 0; i < inputs.size(); i++) { // resetInValue will use ic_ so temporary change as current input's channel // TODO(TJ): change ic_ as vector then can remove channels_ ic_ = channels_[i]; resetInValue(inputs[i], nullptr, i); CHECK(inputs[i]); auto dm = inputs[i]->getDims(); // inputs format can be different, but ndims must equal CHECK(i == 0 || dm.size() == inputs[0]->getDims().size()); CHECK_EQ(bs_, dm[0]); CHECK_EQ(channels_[i], dm[1]); if (dm.size() > 2) { CHECK_EQ(ih_, dm[2]); CHECK_EQ(iw_, dm[3]); } if (inputs[i]->getFormat() == format::nc) { hasnc = true; } if (inputs[i]->getFormat() == format::nChw8c) { has8c = true; } if (inputs[i]->getFormat() == format::nChw16c) { has16c = true; } } // change back, ic_ always save the input 0 size ic_ = channels_[0]; format outFmt; if (has16c && oc_ % 16 == 0) { outFmt = format::nChw16c; } else if (has8c && oc_ % 8 == 0) { outFmt = format::nChw8c; } else if (hasnc) { CHECK(oh_ == 1 && ow_ == 1); outFmt = format::nc; } else { outFmt = format::nchw; } memory::dims outDims = hasnc ? memory::dims{bs_, oc_} : memory::dims{bs_, oc_, oh_, ow_}; auto outPD = MKLDNNMatrix::createPrimitiveDesc(outDims, outFmt, engine_); resetOutValue(out, outPD); } void MKLDNNConcatLayer::resetFwdPD(std::shared_ptr& pd, std::vector& inputs, MKLDNNMatrixPtr out) { std::vector srcPDs; for (size_t i = 0; i < inputs.size(); i++) { srcPDs.push_back(inputs[i]->getPrimitiveDesc()); } CHECK(out); pd.reset(new concat::primitive_desc(out->getMemoryDesc(), axis_, srcPDs)); CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); } void MKLDNNConcatLayer::resetFwdPipeline( std::vector& pipeline, std::shared_ptr& pd, std::vector& inputs, MKLDNNMatrixPtr& out) { std::vector srcs; for (size_t i = 0; i < inputs.size(); i++) { srcs.push_back(*(inputs[i])); } fwd_.reset(new concat(*pd, srcs, *out)); pipeline.push_back(*fwd_); } void MKLDNNConcatLayer::resetBwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& out) { CHECK(outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); CHECK(out); inputs.resize(inputLayers_.size()); for (size_t i = 0; i < inputs.size(); i++) { CHECK(inVals_[i]); // resetInGrad will use inVal_ // TODO(TJ): change move inVals_ to MKLDNNLayer ans remove inVal_ inVal_ = inVals_[i]; resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i); CHECK_PRIMITIVE_DESC_EQ(inputs[i], inVals_[i]->getPrimitiveDesc()); } // change back, inVal_ always save the input 0 inVal_ = inVals_[0]; } void MKLDNNConcatLayer::resetBwdPipeline( std::vector& pipeline, std::vector>& prims, std::vector& inputs, MKLDNNMatrixPtr& out) { // reset the backward primitives memory::dims offsets = {0, 0, 0, 0}; prims.resize(inputs.size()); CHECK_EQ(inputs.size(), channels_.size()); for (size_t i = 0; i < inputs.size(); i++) { auto viewPD = view::primitive_desc( out->getPrimitiveDesc(), inputs[i]->getDims(), offsets); auto bwdPD = reorder::primitive_desc(viewPD.dst_primitive_desc(), inputs[i]->getPrimitiveDesc()); prims[i].reset(new reorder(bwdPD, *out, *(inputs[i]))); offsets[axis_] += channels_[i]; // push to pipeline pipeline.push_back(*prims[i]); } } } // namespace paddle