/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #ifdef PADDLE_WITH_CUDA #include #include #include "paddle/fluid/platform/dynload/curand.h" #endif #ifdef PADDLE_WITH_HIP #include #include #include "paddle/fluid/platform/dynload/hiprand.h" #endif #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/operators/dropout_impl_util.h" #include "paddle/fluid/operators/dropout_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h" #include "paddle/fluid/platform/aligned_vector.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/phi/kernels/funcs/functors.h" namespace paddle { namespace operators { template __global__ void RandomGenerator(const size_t n, uint64_t seed, const float dropout_prob, const T* src, MaskType* mask, T* dst, bool is_upscale_in_train, uint64_t increment) { using MT = typename details::MPTypeTrait::Type; int idx = blockDim.x * blockIdx.x + threadIdx.x; #ifdef PADDLE_WITH_HIP hiprandStatePhilox4_32_10_t state; hiprand_init(seed, idx, increment, &state); #else curandStatePhilox4_32_10_t state; curand_init(seed, idx, increment, &state); #endif MaskType mask_val; T dst_val; MT factor = static_cast(1.0f / (1.0f - dropout_prob)); for (; idx < n; idx += blockDim.x * gridDim.x) { T src_val = src[idx]; #ifdef PADDLE_WITH_HIP if (hiprand_uniform(&state) < dropout_prob) { #else if (curand_uniform(&state) < dropout_prob) { #endif mask_val = 0; dst_val = 0; } else { mask_val = 1; dst_val = is_upscale_in_train ? static_cast(static_cast(src_val) * factor) : src_val; } mask[idx] = mask_val; dst[idx] = dst_val; } } template __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed, const float dropout_prob, const T* src, MaskType* mask, T* dst, bool is_upscale_in_train, uint64_t increment) { using MT = typename details::MPTypeTrait::Type; using LoadT = platform::AlignedVector; using MaskLoadT = platform::AlignedVector; #ifdef PADDLE_WITH_HIP int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x; hiprandStatePhilox4_32_10_t state; hiprand_init(seed, idx, increment, &state); #else int64_t idx = blockDim.x * blockIdx.x + threadIdx.x; curandStatePhilox4_32_10_t state; curand_init(seed, idx, increment, &state); #endif MT factor = static_cast(1.0f / (1.0f - dropout_prob)); for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) { LoadT src_val; platform::Load(&src[i], &src_val); #ifdef PADDLE_WITH_HIP float4 rand = hiprand_uniform4(&state); #else float4 rand = curand_uniform4(&state); #endif LoadT dst_val; MaskLoadT mask_val; #pragma unroll for (int j = 0; j < VecSize; j++) { if ((&rand.x)[j] < dropout_prob) { dst_val[j] = 0; mask_val[j] = 0; } else { dst_val[j] = is_upscale_in_train ? static_cast(static_cast(src_val[j]) * factor) : src_val[j]; mask_val[j] = 1; } } platform::Store(dst_val, &dst[i]); platform::Store(mask_val, &mask[i]); } } template struct CudaDropoutGradFunctor { using MT = typename details::MPTypeTrait::Type; explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {} __device__ __forceinline__ T operator()(const T dout, const MaskType mask) const { return static_cast(static_cast(dout) * static_cast(mask) * factor_); } private: MT factor_; }; template __global__ void DropoutGradCUDAKernel( const T* dout, const MaskType* mask, const typename details::MPTypeTrait::Type factor, const int64_t size, T* dx) { using MT = typename details::MPTypeTrait::Type; using LoadT = platform::AlignedVector; using MaskLoadT = platform::AlignedVector; int64_t idx = blockDim.x * blockIdx.x + threadIdx.x; for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) { LoadT dout_val; platform::Load(&dout[i], &dout_val); MaskLoadT mask_val; platform::Load(&mask[i], &mask_val); LoadT dx_val; #pragma unroll for (int j = 0; j < VecSize; j++) { dx_val[j] = static_cast(static_cast(dout_val[j]) * static_cast(mask_val[j]) * factor); } platform::Store(dx_val, &dx[i]); } } template void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx, bool is_test, const std::string dropout_implementation, float dropout_prob, bool upscale_in_train, bool is_fix_seed, int seed_val, const Tensor& x, const Tensor* seed, Tensor* mask, Tensor* y) { auto& place = *dev_ctx.eigen_device(); if (!is_test) { int64_t x_numel = x.numel(); auto stream = dev_ctx.stream(); auto* mask_data = mask->data(); size_t size = phi::product(mask->dims()); auto* x_data = x.data(); auto* y_data = y->data(); if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #endif return; } // increment is used to set the args(offset) of curand_init, which defines // offset in subsequence. // The detail: // https://docs.nvidia.com/cuda/curand/device-api-overview.html // Increment should be at least the number of curand() random numbers used // in each thread to avoid the random number generated this time being the // same as the previous calls. uint64_t seed_data; uint64_t increment; // VectorizedRandomGenerator use curand_uniform4, so we only support // vec_size is 4; int vec_size = (platform::GetVectorizedSize(x_data) == 4) ? 4 : 1; auto gpu_config = GetGpuLaunchConfig1D(dev_ctx, x_numel, vec_size); auto offset = ((x_numel - 1) / (gpu_config.GetThreadNum() * vec_size) + 1) * vec_size; GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset, &seed_data, &increment); #ifdef __HIPCC__ if (vec_size == 4 && size % 4 == 0) { hipLaunchKernelGGL( HIP_KERNEL_NAME(VectorizedRandomGenerator), gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream, size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment); } else { hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator), gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream, size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment); } #else if (vec_size == 4 && size % 4 == 0) { VectorizedRandomGenerator<<< gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>( size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment); } else { RandomGenerator<<>>( size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment); } #endif } else { auto X = EigenMatrix::Reshape(x, 1); auto Y = EigenMatrix::Reshape(*y, 1); if (upscale_in_train) { Y.device(place) = X; } else { Y.device(place) = X * static_cast(1.0f - dropout_prob); } } } template void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx, const std::string dropout_implementation, float dropout_prob, const Tensor& grad_y, const Tensor& mask, int64_t size, Tensor* grad_x, bool is_test = false) { using MT = typename details::MPTypeTrait::Type; auto stream = dev_ctx.stream(); MT factor; if (is_test) { if (dropout_implementation == "upscale_in_train") { factor = static_cast(1.0f); } else { factor = static_cast(1.0f - dropout_prob); } std::vector ins = {&grad_y}; std::vector outs = {grad_x}; auto functor = phi::funcs::ScaleFunctor(factor); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } else { std::vector ins = {&grad_y, &mask}; std::vector outs = {grad_x}; if (dropout_implementation == "upscale_in_train") { if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP hipMemset(grad_x->data(), 0, size * sizeof(T)); #else cudaMemset(grad_x->data(), 0, size * sizeof(T)); #endif } else { factor = static_cast(1.0f / (1.0f - dropout_prob)); paddle::operators::LaunchSameDimsElementwiseCudaKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } else { factor = static_cast(1.0f); paddle::operators::LaunchSameDimsElementwiseCudaKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } } } // namespace operators } // namespace paddle