/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "cub/cub.cuh" #include "paddle/fluid/operators/math.h" #include "paddle/fluid/operators/nll_loss_op.h" #include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/hostdevice.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; static constexpr int kNumCUDAThreads = 512; static constexpr int kNumMaxinumNumBlocks = 4096; static const int NTHREADS = 32; static inline int NumBlocks(const int N) { return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads, kNumMaxinumNumBlocks); } #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ i += blockDim.x * gridDim.x) template __global__ void GPUNLLLossForward1D_no_reduce(T* out_data, const T* x_data, const int64_t* label_data, const T* weight_data, const int64_t batch_size, const int64_t n_classes, const int64_t ignore_index) { CUDA_1D_KERNEL_LOOP(i, batch_size) { const int64_t cur_label = label_data[i]; if (cur_label == ignore_index) { out_data[i] = 0; continue; } const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; out_data[i] = -x_data[i * n_classes + cur_label] * cur_weight; } } template __global__ void GPUNLLLossForward1D_with_reduce( T* out_data, T* total_weight_data, const T* x_data, const int64_t* label_data, const T* weight_data, const int64_t batch_size, const int64_t n_classes, const int64_t size_average, const int64_t ignore_index) { __shared__ T sharedInputs[NTHREADS], sharedWeights[NTHREADS]; sharedInputs[threadIdx.x] = 0; sharedWeights[threadIdx.x] = 0; int i; for (i = threadIdx.x; i < batch_size; i += NTHREADS) { const auto cur_label = label_data[i]; if (cur_label != ignore_index) { const auto cur_weight = weight_data ? weight_data[cur_label] : (T)1; sharedInputs[threadIdx.x] -= x_data[i * n_classes + cur_label] * cur_weight; sharedWeights[threadIdx.x] += cur_weight; } } __syncthreads(); if (threadIdx.x == 0) { *out_data = *total_weight_data = 0; T output_val = 0; T total_weight_val = 0; for (i = 0; i < NTHREADS; ++i) { output_val += sharedInputs[i]; total_weight_val += sharedWeights[i]; } *total_weight_data = total_weight_val; *out_data = output_val; if (size_average && *total_weight_data != 0) { *out_data = output_val / total_weight_val; } } } // Reduce N values concurrently, i.e. suppose N = 2, and there are 4 threads: // (1, 2), (3, 4), (5, 6), (7, 8), then the return in threadVals for thread 0 // is (1 + 3 + 5 + 7, 2 + 4 + 6 + 8) = (16, 20) // // If smem is not used again, there is no need to __syncthreads before this // call. However, if smem will be used, e.g., this function is called in a loop, // then __syncthreads is needed either before or afterwards to prevent non-0 // threads overriding smem in the next loop before num-0 thread reads from it. template __device__ void reduceNValuesInBlock(T* smem, T threadVals[N], const unsigned int numVals, ReduceOp reduceOp, T init) { if (numVals == 0) { #pragma unroll for (int i = 0; i < N; ++i) { threadVals[i] = init; } return; } // We store each of the N values contiguously, so if N = 2, all values for // the first threadVal for each thread in the block are stored followed by // all of the values for the second threadVal for each thread in the block if (threadIdx.x < numVals) { #pragma unroll for (int i = 0; i < N; ++i) { smem[i * numVals + threadIdx.x] = threadVals[i]; } } __syncthreads(); // Number of lanes in the final reduction --> this is used to determine // where to put the outputs of each of the n things we are reducing. If // nLP = 32, then we have the 32 outputs for the first threadVal, // followed by the 32 outputs for the second threadVal, etc. const unsigned int numLanesParticipating = min(numVals, warpSize); if (numVals > warpSize && ((threadIdx.x / warpSize) == 0)) { #pragma unroll for (int i = 0; i < N; ++i) { threadVals[i] = threadIdx.x < numVals ? threadVals[i] : init; } for (int i = warpSize + threadIdx.x; i < numVals; i += warpSize) { #pragma unroll for (int j = 0; j < N; ++j) { threadVals[j] = reduceOp(threadVals[j], smem[j * numVals + i]); } } #pragma unroll for (int i = 0; i < N; ++i) { smem[i * numLanesParticipating + threadIdx.x] = threadVals[i]; } } __syncthreads(); if (threadIdx.x == 0) { if (numLanesParticipating == 32) { #pragma unroll for (int i = 0; i < N; ++i) { #pragma unroll for (int j = 1; j < 32; ++j) { threadVals[i] = reduceOp(threadVals[i], smem[i * 32 + j]); } } } else { #pragma unroll for (int i = 0; i < N; ++i) { for (int j = 1; j < numLanesParticipating; ++j) { threadVals[i] = reduceOp(threadVals[i], smem[i * numVals + j]); } } } } } // Block-wide reduction in shared memory helper; only threadIdx.x == 0 will // return the reduced value // // If smem is not used again, there is no need to __syncthreads before this // call. However, if smem will be used, e.g., this function is called in a loop, // then __syncthreads is needed either before or afterwards to prevent non-0 // threads overriding smem in the next loop before num-0 thread reads from it. template __device__ T reduceBlock(T* smem, const unsigned int numVals, T threadVal, ReduceOp reduceOp, T init) { reduceNValuesInBlock(smem, &threadVal, numVals, reduceOp, init); return threadVal; } template __global__ void GPUNLLLossForward2D_no_reduce( T* out_data, const T* x_data, const int64_t* label_data, const T* weight_data, const int64_t batch_size, const int64_t n_classes, const int64_t in_dim2, const int64_t in_dim3, const int64_t ignore_index) { const int64_t map_size = in_dim2 * in_dim3; const int64_t sample_size = n_classes * map_size; const int64_t out_numel = batch_size * map_size; CUDA_1D_KERNEL_LOOP(i, out_numel) { const int64_t b = i % batch_size; const int64_t h = (i / batch_size) % in_dim2; const int64_t w = (i / (batch_size * in_dim2)) % in_dim3; const int64_t index = b * map_size + h * in_dim3 + w; const int64_t cur_label = label_data[index]; if (cur_label == ignore_index) { out_data[index] = 0; continue; } const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; out_data[index] = -x_data[b * sample_size + cur_label * map_size + h * in_dim3 + w] * cur_weight; } } template __global__ void GPUNLLLossForward2D_with_reduce( T* out_data, T* total_weight_data, const T* x_data, const int64_t* label_data, const T* weight_data, const int64_t batch_size, const int64_t n_classes, const int64_t map_nelem, const int64_t blocks_per_sample, const int64_t ignore_index) { __shared__ T partial_sums[kNumCUDAThreads]; int64_t i; T input_sum = 0; T acc_weight = 0; *out_data = 0; *total_weight_data = 0; int64_t sample = blockIdx.x / blocks_per_sample; int64_t toffset = sample * map_nelem; int64_t ioffset = sample * map_nelem * n_classes; int64_t step = blockDim.x * blocks_per_sample; for (i = (blockIdx.x % blocks_per_sample) * blockDim.x + threadIdx.x; i < map_nelem; i += step) { const int64_t cur_label = label_data[toffset + i]; if (cur_label != ignore_index) { const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; input_sum -= x_data[ioffset + i + map_nelem * cur_label] * cur_weight; acc_weight += cur_weight; } } input_sum = reduceBlock(partial_sums, blockDim.x, input_sum, thrust::plus(), (T)0); __syncthreads(); acc_weight = reduceBlock(partial_sums, blockDim.x, acc_weight, thrust::plus(), (T)0); if (threadIdx.x == 0) { paddle::platform::CudaAtomicAdd(total_weight_data, acc_weight); paddle::platform::CudaAtomicAdd(out_data, input_sum); } } template __global__ void GPUNLLLossForward2D_size_average(T* out_data, T* total_weight_data) { if (*total_weight_data != 0) { *out_data /= *total_weight_data; } } template __global__ void GPUNLLLossBackward1D_no_reduce( T* dx_data, const int64_t* label_data, const T* weight_data, const T* dout_data, const int64_t batch_size, const int64_t n_classes, const int64_t ignore_index) { CUDA_1D_KERNEL_LOOP(i, batch_size) { const int64_t cur_label = label_data[i]; if (cur_label == ignore_index) { continue; } const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; dx_data[i * n_classes + cur_label] = -dout_data[i] * cur_weight; } } template __global__ void GPUNLLLossBackward1D_with_reduce( T* dx_data, const T* total_weight_data, const int64_t* label_data, const T* weight_data, const T* dout_data, const int64_t batch_size, const int64_t n_classes, const int64_t size_average, const int64_t ignore_index) { if (*total_weight_data <= 0) { return; } int i; const T norm = size_average ? (T)(1 / *total_weight_data) : (T)1; for (i = threadIdx.x; i < batch_size; i += NTHREADS) { const int64_t cur_label = label_data[i]; if (cur_label != ignore_index) { const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; dx_data[i * n_classes + cur_label] = -cur_weight * dout_data[0] * norm; } } } template __global__ void GPUNLLLossBackward2D_no_reduce( T* dx_data, const int64_t* label_data, const T* weight_data, const T* dout_data, const int64_t batch_size, const int64_t n_classes, const int64_t in_dim2, const int64_t in_dim3, const int64_t ignore_index) { const int64_t map_size = in_dim2 * in_dim3; const int64_t sample_size = n_classes * map_size; const int64_t out_numel = batch_size * map_size; CUDA_1D_KERNEL_LOOP(i, out_numel) { const int64_t b = i % batch_size; const int64_t h = (i / batch_size) % in_dim2; const int64_t w = (i / (batch_size * in_dim2)) % in_dim3; const int64_t index = b * map_size + h * in_dim3 + w; const int64_t cur_label = label_data[index]; if (cur_label == ignore_index) { continue; } const T cur_weight = weight_data ? weight_data[cur_label] : (T)1; dx_data[b * sample_size + cur_label * map_size + h * in_dim3 + w] = -dout_data[index] * cur_weight; } } template __global__ void GPUNLLLossBackward2D_with_reduce( T* dx_data, const T* total_weight_data, const int64_t* label_data, const T* weight_data, const T* dout_data, const int64_t batch_size, const int64_t n_classes, const int64_t map_nelem, const int64_t blocks_per_sample, const int64_t size_average, const int64_t ignore_index) { if (*total_weight_data <= 0) { return; } int64_t i; const T norm = size_average ? (T)(1 / *total_weight_data) : (T)1; int sample = blockIdx.x / blocks_per_sample; int step = blockDim.x * blocks_per_sample; int toffset = sample * map_nelem; int ioffset = sample * map_nelem * n_classes; for (i = (blockIdx.x % blocks_per_sample) * blockDim.x + threadIdx.x; i < map_nelem; i += step) { const int64_t cur_label = label_data[toffset + i]; if (cur_label != ignore_index) { dx_data[ioffset + i + map_nelem * cur_label] = -(weight_data ? weight_data[cur_label] : (T)1) * norm * dout_data[0]; } } } template class NLLLossCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* weight = ctx.Input("Weight"); auto* out = ctx.Output("Out"); auto* total_weight = ctx.Output("Total_weight"); auto ignore_index = ctx.Attr("ignore_index"); auto reduction = ctx.Attr("reduction"); auto x_data = x->data(); auto out_data = out->mutable_data(ctx.GetPlace()); auto total_weight_data = total_weight->mutable_data(ctx.GetPlace()); auto label_data = labels->data(); auto weight_data = weight ? weight->data() : nullptr; cudaMemset(total_weight_data, 0, sizeof(T)); auto x_dims = x->dims(); auto batch_size = x_dims[0]; auto n_classes = x_dims[1]; int64_t size_average = (int64_t)(reduction == "mean"); if (x_dims.size() == 2) { int blocks = NumBlocks(batch_size); int threads = kNumCUDAThreads; auto& dev_ctx = ctx.cuda_device_context(); if (reduction == "none") { GPUNLLLossForward1D_no_reduce< T><<>>( out_data, x_data, label_data, weight_data, batch_size, n_classes, ignore_index); } else { GPUNLLLossForward1D_with_reduce< T><<<1, NTHREADS, 0, dev_ctx.stream()>>>( out_data, total_weight_data, x_data, label_data, weight_data, batch_size, n_classes, size_average, ignore_index); } } else if (x_dims.size() == 4) { const auto in_dim2 = x_dims[2]; const auto in_dim3 = x_dims[3]; const auto map_size = in_dim2 * in_dim3; const auto out_numel = batch_size * in_dim2 * in_dim3; int blocks = NumBlocks(out_numel); int threads = kNumCUDAThreads; auto& dev_ctx = ctx.cuda_device_context(); if (reduction == "none") { GPUNLLLossForward2D_no_reduce< T><<>>( out_data, x_data, label_data, weight_data, batch_size, n_classes, in_dim2, in_dim3, ignore_index); } else { int blocks_per_sample = NumBlocks(map_size) / 128; blocks_per_sample = (blocks_per_sample == 0) ? 1 : blocks_per_sample; int total_blocks = blocks_per_sample * batch_size; GPUNLLLossForward2D_with_reduce< T><<>>( out_data, total_weight_data, x_data, label_data, weight_data, batch_size, n_classes, map_size, blocks_per_sample, ignore_index); if (size_average) { GPUNLLLossForward2D_size_average<<<1, 1, 0, dev_ctx.stream()>>>( out_data, total_weight_data); } } } } }; template class NLLLossGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* weight = ctx.Input("Weight"); auto* total_weight = ctx.Input("Total_weight"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto dx_data = dx->mutable_data(ctx.GetPlace()); auto dout_data = dout->data(); auto label_data = labels->data(); auto weight_data = weight ? weight->data() : nullptr; auto total_weight_data = total_weight->data(); auto ignore_index = ctx.Attr("ignore_index"); auto reduction = ctx.Attr("reduction"); cudaMemset(dx_data, 0, dx->numel() * sizeof(T)); int64_t size_average = (int64_t)(reduction == "mean"); auto x_dims = x->dims(); auto batch_size = x_dims[0]; auto n_classes = x_dims[1]; if (x_dims.size() == 2) { int blocks = NumBlocks(batch_size); int threads = kNumCUDAThreads; auto& dev_ctx = ctx.cuda_device_context(); if (reduction == "none") { GPUNLLLossBackward1D_no_reduce< T><<>>( dx_data, label_data, weight_data, dout_data, batch_size, n_classes, ignore_index); } else { GPUNLLLossBackward1D_with_reduce< T><<<1, NTHREADS, 0, dev_ctx.stream()>>>( dx_data, total_weight_data, label_data, weight_data, dout_data, batch_size, n_classes, size_average, ignore_index); } } else if (x_dims.size() == 4) { const auto in_dim2 = x_dims[2]; const auto in_dim3 = x_dims[3]; const auto map_size = in_dim2 * in_dim3; const auto out_numel = batch_size * in_dim2 * in_dim3; int blocks = NumBlocks(out_numel); int threads = kNumCUDAThreads; auto& dev_ctx = ctx.cuda_device_context(); if (reduction == "none") { GPUNLLLossBackward2D_no_reduce< T><<>>( dx_data, label_data, weight_data, dout_data, batch_size, n_classes, in_dim2, in_dim3, ignore_index); } else { int blocks_per_sample = NumBlocks(map_size) / 128; blocks_per_sample = (blocks_per_sample == 0) ? 1 : blocks_per_sample; int total_blocks = blocks_per_sample * batch_size; GPUNLLLossBackward2D_with_reduce< T><<>>( dx_data, total_weight_data, label_data, weight_data, dout_data, batch_size, n_classes, map_size, blocks_per_sample, size_average, ignore_index); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( nll_loss, ops::NLLLossCUDAKernel, ops::NLLLossCUDAKernel); REGISTER_OP_CUDA_KERNEL( nll_loss_grad, ops::NLLLossGradCUDAKernel, ops::NLLLossGradCUDAKernel);