#!/usr/bin/env python from paddle.trainer_config_helpers import * height=32 width=32 num_class = 10 batch_size = get_config_arg('batch_size', int, 128) args={'height':height, 'width':width, 'color':True, 'num_class':num_class} define_py_data_sources2("train.list", None, module="provider", obj="process", args=args) settings( batch_size = batch_size, learning_rate = 0.01 / batch_size, learning_method = MomentumOptimizer(0.9), regularization = L2Regularization(0.0005 * batch_size) ) # conv1 net = data_layer('data', size=height * width * 3) net = img_conv_layer(input=net, filter_size=5, num_channels=3, num_filters=32, stride=1, padding=2) net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1) # conv2 net = img_conv_layer(input=net, filter_size=5, num_filters=32, stride=1, padding=2) net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) # conv3 net = img_conv_layer(input=net, filter_size=3, num_filters=64, stride=1, padding=1) net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling()) net = fc_layer(input=net, size=64, act=ReluActivation()) net = fc_layer(input=net, size=10, act=SoftmaxActivation()) lab = data_layer('label', num_class) loss = classification_cost(input=net, label=lab) outputs(loss)