/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/operators/layer_norm_kernel.cu.h" #include "paddle/fluid/operators/math/functors.h" #include "paddle/fluid/platform/aligned_vector.h" #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/float16.h" namespace paddle { namespace operators { #define CACHE_LINE 128 #define MAX_CACHE_BYTES (CACHE_LINE / CHAR_BIT) /** * get the threads for fused_residual_dropout_bias: * 1D blocks: blockDim.x = cols * 2D grids: gridDim.y = rows */ inline platform::GpuLaunchConfig Get1DBlocksAnd2DGrids( const platform::CUDADeviceContext &ctx, const uint32_t rows, const uint32_t cols, const int vec_size) { const uint32_t tmp_cols = cols / vec_size; int threads = std::max( static_cast(32), std::min(tmp_cols, static_cast(ctx.GetMaxThreadsPerBlock()))); const auto blocks_x = std::max(static_cast(1), (tmp_cols + threads - 1) / threads); const auto blocks_y = std::max(static_cast(1), rows); platform::GpuLaunchConfig config; config.block_per_grid.x = blocks_x; config.block_per_grid.y = blocks_y; config.thread_per_block.x = threads; return config; } template __forceinline__ __device__ void RandVec(curandStatePhilox4_32_10_t *state, float *data); template <> __forceinline__ __device__ void RandVec<1>(curandStatePhilox4_32_10_t *state, float *data) { data[0] = curand_uniform(state); } template <> __forceinline__ __device__ void RandVec<2>(curandStatePhilox4_32_10_t *state, float *data) { data[0] = curand_uniform(state); data[1] = curand_uniform(state); } template <> __forceinline__ __device__ void RandVec<4>(curandStatePhilox4_32_10_t *state, float *data) { float4 rand4 = curand_uniform4(state); data[0] = rand4.x; data[1] = rand4.y; data[2] = rand4.w; data[3] = rand4.z; } template <> __forceinline__ __device__ void RandVec<8>(curandStatePhilox4_32_10_t *state, float *data) { RandVec<4>(state, data); RandVec<4>(state, data + 4); } template inline void SetZero(const platform::CUDADeviceContext &ctx, T *ptr, const size_t size) { PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(ptr, 0, size * sizeof(T), ctx.stream())); } /** * reduce the sum of 128 cols data by 8*VecSize warps */ template inline __device__ void CalculateDBias(const T *tmp_sum, T *dbias, const int cols) { // save temporary sum to cache and do transpose __shared__ T cache[BlockSizeX * VecSize][BlockSizeY]; for (int i = 0; i < VecSize; i++) { cache[threadIdx.x * VecSize + i][threadIdx.y] = tmp_sum[i]; } __syncthreads(); // reduce sum T sum[2] = {static_cast(0)}; int tid = threadIdx.y * blockDim.x + threadIdx.x; int x = tid >> 5; // warp id int y = tid & 31; // thread id on warp 0~31 // need BlockSizeX * VecSize warps for (int j = x; j < BlockSizeX * VecSize; j += 32) { // reduce 128 to 32 #pragma unroll for (int i = 0; i < (BlockSizeY >> 5); i++) { sum[(j >> 5)] += cache[j][y + i * 32]; } } int reduce_num_pre_thread = (BlockSizeX * VecSize + 31) / 32; // reduce 32 to 1 for (int i = 0; i < reduce_num_pre_thread; i++) { sum[i] = WarpReduceSum(sum[i]); } // save sum to dbias if (y == 0 && x < BlockSizeX * VecSize) { for (int i = 0; i < reduce_num_pre_thread; i++) { int bias_id = blockIdx.x * BlockSizeX * VecSize + x + i * 32; if (bias_id < cols) { dbias[bias_id] = sum[i]; } } } } template inline __device__ T GetFactor(const float dropout_prob, const bool is_upscale_in_train, const bool is_test) { T factor = is_upscale_in_train ? static_cast(1.0f / (1.0f - dropout_prob)) : static_cast(1.0f); if (is_test) { factor = is_upscale_in_train ? static_cast(1.0f) : static_cast(1.0f - dropout_prob); } return factor; } } // namespace operators } // namespace paddle