/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/platform/device/gpu/gpu_dnn.h" #ifdef __HIPCC__ #define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim) #else #define LAUNCH_BOUNDS(BlockDim) #endif #include "paddle/fluid/operators/elementwise/elementwise_functor.h" #include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h" #include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h" #include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h" #include "paddle/fluid/platform/fast_divmod.h" namespace paddle { namespace operators { #define MAX_INPUT_NUM 2 namespace kps = paddle::operators::kernel_primitives; template using CudnnDataType = platform::CudnnDataType; template using ReduceParamType = typename CudnnDataType::BatchNormParamType; template __global__ void BroadcastKernelBinary( const InT* __restrict__ in0, const InT* __restrict__ in1, OutT* out, framework::Array use_broadcast, uint32_t numel, framework::Array, MAX_INPUT_NUM> configlists, int main_tid, int tail_tid, Functor func) { int fix = blockIdx.x * blockDim.x * VecSize; int num = tail_tid; InT arg0[VecSize * DATA_PER_THREAD]; InT arg1[VecSize * DATA_PER_THREAD]; OutT result[VecSize * DATA_PER_THREAD]; if (blockIdx.x < main_tid) { num = blockDim.x * VecSize; // blockIdx.x < main_tid } // load in0 if (use_broadcast[0]) { kernel_primitives::ReadDataBc( arg0, in0, fix, configlists[0], numel); } else { kernel_primitives::ReadData(arg0, in0 + fix, num); } // load in1 if (use_broadcast[1]) { kernel_primitives::ReadDataBc( arg1, in1, fix, configlists[1], numel); } else { kernel_primitives::ReadData(arg1, in1 + fix, num); } // compute kernel_primitives::ElementwiseBinary( result, arg0, arg1, func); // store kernel_primitives::WriteData(out + fix, result, num); } // bias add forward impl for "[m, n] + [n] = [m, n]" template void LaunchBiasAddFwKernel(const platform::CUDADeviceContext& ctx, int m, int n, const T* in0, const T* in1, T* out) { int in_vec_size = std::min(platform::GetVectorizedSize(in0), platform::GetVectorizedSize(in1)); int out_vec_size = std::min(4, platform::GetVectorizedSize(out)); int vec_size = std::min(out_vec_size, in_vec_size); int numel = m * n; const int threads = 256; const int data_per_thread = 1; int blocks = ((numel + vec_size * data_per_thread - 1) / (vec_size * data_per_thread) + threads - 1) / threads; int main_tid = numel / (data_per_thread * vec_size * threads); int tail_tid = numel % (data_per_thread * vec_size * threads); framework::Array, MAX_INPUT_NUM> configlists; framework::Array use_broadcast; use_broadcast[0] = false; use_broadcast[1] = false; if (m != 1) { use_broadcast[1] = true; } // Here, dims are transposed due to the logic in BroadcastConfig. std::vector input1_dims = {n, 1}; std::vector out_dims = {n, m}; configlists[1] = kps::details::BroadcastConfig<2>(out_dims, input1_dims, 2); auto func = AddFunctor(); auto stream = ctx.stream(); switch (vec_size) { case 4: { BroadcastKernelBinary<<>>( in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid, func); break; } case 2: { BroadcastKernelBinary<<>>( in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid, func); break; } case 1: { BroadcastKernelBinary<<>>( in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid, func); break; } default: { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported vectorized size: %d !", vec_size)); break; } } } template __global__ void LAUNCH_BOUNDS(BlockDim) Compute1DColumnReduceKernel(const int reduce_num, const int left_num, const T* in, T* out) { typedef cub::BlockReduce, BlockDim> BlockReduce; __shared__ typename BlockReduce::TempStorage mean_storage; for (int i = blockIdx.x; i < left_num; i += gridDim.x) { ReduceParamType x_sum = static_cast>(0); for (int j = threadIdx.x; j < reduce_num; j += blockDim.x) { const int index = j * left_num + i; ReduceParamType x_i = static_cast>(in[index]); x_sum += x_i; } x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum()); if (threadIdx.x == 0) { out[i] = static_cast(x_sum); } } } template void Launch1DColumnReduce(gpuStream_t stream, const int max_threads, const int reduce_num, const int left_num, const T* d_out, T* d_bias) { const int block = 256; const int max_blocks = std::max(max_threads / block, 1); const int grid = std::min(left_num, max_blocks); Compute1DColumnReduceKernel<<>>( reduce_num, left_num, d_out, d_bias); } void SetConfigForColumnReduce(const int max_threads, const int reduce_num, const int left_num, int* blocking_size, bool* should_reduce_again, dim3* block_dim, dim3* grid_dim) { block_dim->z = 1; grid_dim->z = 1; *should_reduce_again = false; int num_block = (max_threads / left_num); if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) { *blocking_size = details::GetLastPow2(reduce_num / num_block); if (*blocking_size <= 1) { *blocking_size = details::GetLastPow2(sqrt(reduce_num)); } else if (*blocking_size * 2 < reduce_num) { *blocking_size *= 2; } *should_reduce_again = true; block_dim->x = 32; block_dim->y = 1; grid_dim->x = (left_num + block_dim->x - 1) / block_dim->x; grid_dim->y = (reduce_num + *blocking_size - 1) / *blocking_size; } else { block_dim->x = 32; *blocking_size = reduce_num; grid_dim->x = (left_num + block_dim->x - 1) / block_dim->x; grid_dim->y = 1; } } template __global__ void BiasAddBwSinglePassKernel(const T* in, int reduce_num, int left_num, T* out) { int idx = blockIdx.x * blockDim.x + threadIdx.x; ReduceParamType x_sum = static_cast>(0); if (idx < left_num) { for (int iy = 0; iy < reduce_num; iy++) { int id = iy * left_num + idx; ReduceParamType x_val = static_cast>(in[id]); x_sum += x_val; } out[idx] = static_cast(x_sum); } } template __global__ void BiasAddBw2DReduceKernel(const T* x, int reduce_num, int left_num, int workload_per_thread, ReduceParamType* temp_x_sum) { int idx = blockIdx.x * blockDim.x + threadIdx.x; int idy = blockIdx.y * workload_per_thread; T x_val; ReduceParamType x_sum = static_cast>(0); if (idx < left_num) { int loop = reduce_num - idy; loop = loop > workload_per_thread ? workload_per_thread : loop; for (int iy = 0; iy < loop; iy++) { int id = (idy + iy) * left_num + idx; ReduceParamType x_val = static_cast>(x[id]); x_sum += x_val; } temp_x_sum[idx + blockIdx.y * left_num] = x_sum; } } template __global__ void BiasAddBw1DReduceKernel(const ReduceParamType* temp_sum, int workload_per_thread, int left_num, T* out) { int idx = blockIdx.x * blockDim.x + threadIdx.x; ReduceParamType x_sum = static_cast>(0); if (idx < left_num) { for (int iy = 0; iy < workload_per_thread; iy++) { int id = iy * left_num + idx; x_sum += temp_sum[id]; } out[idx] = static_cast(x_sum); } } template void Launch2DColumnReduce(const platform::CUDADeviceContext& dev_ctx, const int max_threads, const int reduce_num, const int left_num, const T* d_out, T* d_bias) { dim3 block; dim3 grid; bool should_reduce_again = false; int blocking_size = 1; SetConfigForColumnReduce(max_threads, reduce_num, left_num, &blocking_size, &should_reduce_again, &block, &grid); const auto& stream = dev_ctx.stream(); if (!should_reduce_again) { BiasAddBwSinglePassKernel<<>>(d_out, reduce_num, left_num, d_bias); } else { framework::Tensor tmp_sum; tmp_sum.Resize({grid.y, left_num}); tmp_sum.mutable_data>(dev_ctx.GetPlace()); BiasAddBw2DReduceKernel<<>>( d_out, reduce_num, left_num, blocking_size, tmp_sum.template data>()); BiasAddBw1DReduceKernel<<>>( tmp_sum.template data>(), grid.y, left_num, d_bias); } } // bias add backward impl whose pattern are column-reduce with d_out[m, n] as // input // and d_bias[n] as output. template void LaunchBiasAddBwKernel(const platform::CUDADeviceContext& dev_ctx, int m, int n, const T* d_out, T* d_bias) { int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); int reduce_num = m; int left_num = n; bool is_large_enough = (reduce_num > REDUCE_SPLIT_BOUNDARY / 2) || (left_num > REDUCE_SPLIT_BOUNDARY); if (!is_large_enough) { Launch1DColumnReduce(dev_ctx.stream(), max_threads, reduce_num, left_num, d_out, d_bias); } else { Launch2DColumnReduce(dev_ctx, max_threads, reduce_num, left_num, d_out, d_bias); } } #undef MAX_INPUT_NUM } // namespace operators } // namespace paddle