/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "glog/logging.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/reduce_ops/reduce_op.h" #include "paddle/fluid/operators/solve_op.h" #include "paddle/fluid/operators/tril_triu_op.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/kernels/funcs/complex_functors.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template static void triangular_solve(const DeviceContext &context, const Tensor &x, const Tensor &y, Tensor *out, bool upper, bool transpose, bool unitriangular) { // Tensor broadcast use eigen library std::vector x_bst_dims_vec; std::vector y_bst_dims_vec; std::tie(x_bst_dims_vec, y_bst_dims_vec) = get_broadcast_dims(x, y); Tensor x_bst(x.type()); TensorExpand(context, x, &x_bst, x_bst_dims_vec); Tensor y_bst(y.type()); TensorExpand(context, y, &y_bst, y_bst_dims_vec); // TriangularSolveFunctor performs calculations in-place // x_clone should be a copy of 'x' after broadcast // out should be a copy of 'y' after broadcast Tensor x_clone(x.type()); x_clone.Resize(phi::make_ddim(x_bst_dims_vec)); x_clone.mutable_data(context.GetPlace()); framework::TensorCopy(x_bst, context.GetPlace(), context, &x_clone); out->Resize(phi::make_ddim(y_bst_dims_vec)); out->mutable_data(context.GetPlace()); framework::TensorCopy(y_bst, context.GetPlace(), context, out); math::TriangularSolveFunctor functor; functor(context, &x_clone, out, /*left=*/true, upper, transpose, unitriangular); } template class MatrixReduceSumFunctor { public: void operator()(const Tensor &input, Tensor *output, const framework::ExecutionContext &ctx); }; template class MatrixReduceSumFunctor { public: void operator()(const Tensor &in, Tensor *out, const framework::ExecutionContext &ctx) { // For example: in's dim = [5, 3, 2, 7, 3] ; out's dim = [3, 1, 7, 3] // out_reduce_dim should be [0, 2] const std::vector in_dims = phi::vectorize(in.dims()); auto in_size = in_dims.size(); const std::vector out_dims = phi::vectorize(out->dims()); auto out_size = out_dims.size(); std::vector out_bst_dims(in_size); std::fill(out_bst_dims.data(), out_bst_dims.data() + in_size - out_size, 1); std::copy(out_dims.data(), out_dims.data() + out_size, out_bst_dims.data() + in_size - out_size); out->Resize(phi::make_ddim(out_bst_dims)); std::vector out_reduce_dims; for (size_t idx = 0; idx <= in_size - 3; idx++) { if (in_dims[idx] != 1 && out_bst_dims[idx] == 1) { out_reduce_dims.push_back(idx); } } ReduceKernelFunctor( &in, out, out_reduce_dims, true, false, ctx) .template apply(); out->Resize(phi::make_ddim(out_dims)); } }; } // namespace operators } // namespace paddle