// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/concat_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #include "paddle/phi/kernels/funcs/concat_funcs.h" namespace phi { template void ConcatGradKernel(const Context& dev_ctx, const std::vector& x, const DenseTensor& out_grad, const Scalar& axis_scalar, std::vector x_grad) { using XPUType = typename XPUTypeTrait::Type; auto outs = x_grad; { auto dx = outs; for (size_t i = 0; i < dx.size(); ++i) { if (dx[i] != nullptr) { dx[i]->set_lod(x[i]->lod()); } } } PADDLE_ENFORCE_NE( x[0], nullptr, phi::errors::InvalidArgument("The input should not be null.")); auto axis = axis_scalar.to(); axis = phi::funcs::ComputeAxis(static_cast(axis), static_cast(x[0]->dims().size())); // get output tensor that the name is not kEmptyVarName std::vector ptrs(outs.size()); for (size_t j = 0; j < outs.size(); ++j) { if (outs[j] && outs[j]->numel() != 0UL) { dev_ctx.template Alloc(outs[j]); ptrs[j] = reinterpret_cast(outs[j]->data()); } else { ptrs[j] = nullptr; } } PADDLE_ENFORCE_GE( axis, 0, phi::errors::InvalidArgument("concat_grad: axis should be larger than or " "equal to 0, but received axis is %d.", axis)); PADDLE_ENFORCE_LT(axis, out_grad.dims().size(), phi::errors::InvalidArgument( "concat_grad: axis should be less than x[0]->dims()!" "But received axis is %d, while x[0]->dims()" "size is %d.", axis, out_grad.dims().size())); auto input_dims = x[0]->dims(); std::vector split_list(x.size()); std::vector xdims_list(input_dims.size()); int total_length = 0; for (size_t i = 0; i < x.size(); ++i) { split_list[i] = x[i]->dims()[axis]; total_length += x[i]->dims()[axis]; } for (int i = 0; i < input_dims.size(); ++i) { if (i == axis) { continue; } xdims_list[i] = input_dims[i]; } xdims_list[axis] = total_length; int r = xpu::split(dev_ctx.x_context(), reinterpret_cast(out_grad.data()), ptrs, xdims_list, split_list, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat_grad"); } } // namespace phi PD_REGISTER_KERNEL(concat_grad, XPU, ALL_LAYOUT, phi::ConcatGradKernel, float, phi::dtype::float16) {}