# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import gzip import paddle.v2.dataset.flowers as flowers import paddle.v2 as paddle import reader DATA_DIM = 3 * 224 * 224 # Use 3 * 331 * 331 or 3 * 299 * 299 for Inception-ResNet-v2. CLASS_DIM = 102 BATCH_SIZE = 128 def vgg(input, nums, class_dim): def conv_block(input, num_filter, groups, num_channels=None): return paddle.networks.img_conv_group( input=input, num_channels=num_channels, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act=paddle.activation.Relu(), pool_type=paddle.pooling.Max()) assert len(nums) == 5 # the channel of input feature is 3 conv1 = conv_block(input, 64, nums[0], 3) conv2 = conv_block(conv1, 128, nums[1]) conv3 = conv_block(conv2, 256, nums[2]) conv4 = conv_block(conv3, 512, nums[3]) conv5 = conv_block(conv4, 512, nums[4]) fc_dim = 4096 fc1 = paddle.layer.fc(input=conv5, size=fc_dim, act=paddle.activation.Relu(), layer_attr=paddle.attr.Extra(drop_rate=0.5)) fc2 = paddle.layer.fc(input=fc1, size=fc_dim, act=paddle.activation.Relu(), layer_attr=paddle.attr.Extra(drop_rate=0.5)) out = paddle.layer.fc(input=fc2, size=class_dim, act=paddle.activation.Softmax()) return out def vgg13(input, class_dim): nums = [2, 2, 2, 2, 2] return vgg(input, nums, class_dim) def vgg16(input, class_dim): nums = [2, 2, 3, 3, 3] return vgg(input, nums, class_dim) def vgg19(input, class_dim): nums = [2, 2, 4, 4, 4] return vgg(input, nums, class_dim) def main(): paddle.init(use_gpu=False) image = paddle.layer.data( name="image", type=paddle.data_type.dense_vector(DATA_DIM)) lbl = paddle.layer.data( name="label", type=paddle.data_type.integer_value(CLASS_DIM)) extra_layers = None learning_rate = 1e-3 out = vgg16(image, class_dim=CLASS_DIM) cost = paddle.layer.classification_cost(input=out, label=lbl) # Create parameters parameters = paddle.parameters.create(cost) # Create optimizer optimizer = paddle.optimizer.Momentum( momentum=0.9, regularization=paddle.optimizer.L2Regularization(rate=0.0005 * BATCH_SIZE), learning_rate=learning_rate / BATCH_SIZE, learning_rate_decay_a=0.1, learning_rate_decay_b=128000 * 35, learning_rate_schedule="discexp", ) train_reader = paddle.batch( paddle.reader.shuffle( flowers.train(), # To use other data, replace the above line with: # reader.train_reader('train.list'), buf_size=1000), batch_size=BATCH_SIZE) test_reader = paddle.batch( flowers.valid(), # To use other data, replace the above line with: # reader.test_reader('val.list'), batch_size=BATCH_SIZE) # Create trainer trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer, extra_layers=extra_layers, is_local=False) # End batch and end pass event handler def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1 == 0: print "\nPass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics) if isinstance(event, paddle.event.EndPass): with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f: trainer.save_parameter_to_tar(f) result = trainer.test(reader=test_reader) print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) trainer.train( reader=train_reader, num_passes=200, event_handler=event_handler) if __name__ == '__main__': main()