#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from paddle.static import program_guard, Program from op_test import OpTest class TestMVOp(OpTest): def setUp(self): self.op_type = "mv" self.python_api = paddle.mv self.init_config() self.inputs = {'X': self.x, 'Vec': self.vec} self.outputs = {'Out': np.dot(self.x, self.vec)} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['X', 'Vec'], 'Out', check_eager=True) def init_config(self): self.x = np.random.random((2, 100)).astype("float64") self.vec = np.random.random((100)).astype("float64") class TestMVAPI(unittest.TestCase): def test_dygraph_api_out(self): paddle.disable_static() self.x_data = np.random.random((5, 100)).astype("float64") self.x = paddle.to_tensor(self.x_data) self.vec_data = np.random.random((100)).astype("float64") self.vec = paddle.to_tensor(self.vec_data) z = paddle.mv(self.x, self.vec) np_z = z.numpy() z_expected = np.array(np.dot(self.x_data, self.vec_data)) self.assertTrue(np.allclose(np_z, z_expected)) paddle.enable_static() def test_static_graph(self): for x_stop_gradient in [False, True]: for vec_stop_gradient in [False, True]: paddle.enable_static() train_program = Program() startup_program = Program() self.input_x = np.random.rand(5, 100).astype("float64") self.input_vec = np.random.rand(100).astype("float64") with program_guard(train_program, startup_program): data_x = paddle.static.data("x", shape=[5, 100], dtype="float64") data_vec = paddle.static.data("vec", shape=[100], dtype="float64") data_x.stop_gradient = x_stop_gradient data_vec.stop_gradient = vec_stop_gradient result_vec = paddle.mv(data_x, data_vec) self.place = paddle.CPUPlace() exe = paddle.static.Executor(self.place) res, = exe.run(feed={ "x": self.input_x, "vec": self.input_vec }, fetch_list=[result_vec]) z_expected = np.array(np.dot(self.input_x, self.input_vec)) self.assertTrue(np.allclose(res, z_expected)) class TestMVError(unittest.TestCase): def test_input(self): def test_shape(): paddle.enable_static() self.input_x = np.random.rand(5, 100).astype("float64") self.input_vec = np.random.rand(100).astype("float64") data_x = paddle.static.data("x", shape=[5, 100], dtype="float64") data_vec = paddle.static.data("vec", shape=[100, 2], dtype="float64") result_vec = paddle.mv(data_x, data_vec) self.assertRaises(ValueError, test_shape) if __name__ == '__main__': paddle.enable_static() unittest.main()