// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" #include "paddle/fluid/platform/profiler.h" // asynchronous nccl allreduce or synchronous issue: // https://github.com/PaddlePaddle/Paddle/issues/15049 DEFINE_bool( sync_nccl_allreduce, false, "If set true, will call `cudaStreamSynchronize(nccl_stream)`" "after allreduce, this mode can get better performance in some scenarios."); namespace paddle { namespace framework { namespace details { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, const std::vector &local_scopes, const std::vector &places, const platform::NCCLContextMap *ctxs) : OpHandleBase(node), local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) { if (nccl_ctxs_) { for (auto &p : places_) { this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p)); } } } #else AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, const std::vector &local_scopes, const std::vector &places) : OpHandleBase(node), local_scopes_(local_scopes), places_(places) {} #endif void AllReduceOpHandle::RunImpl() { platform::RecordEvent record_event(Name()); WaitInputVarGenerated(); auto in_var_handles = DynamicCast(this->Inputs()); auto out_var_handles = DynamicCast(this->Outputs()); PADDLE_ENFORCE_EQ( in_var_handles.size(), places_.size(), "The NoDummyInputSize should be equal to the number of places."); PADDLE_ENFORCE_EQ( in_var_handles.size(), out_var_handles.size(), "The NoDummyInputSize and NoDummyOutputSize should be equal."); std::vector lod_tensors; for (size_t i = 0; i < local_scopes_.size(); ++i) { auto *s = local_scopes_[i]; auto &local_scope = *s->FindVar(kLocalExecScopeName)->Get(); auto &lod_tensor = local_scope.FindVar(in_var_handles[i]->name())->Get(); lod_tensors.emplace_back(&lod_tensor); PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(), "The name of input and output should be equal."); } if (platform::is_gpu_place(lod_tensors[0]->place())) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr."); int dtype = -1; size_t numel = 0; std::vector> all_reduce_calls; for (size_t i = 0; i < local_scopes_.size(); ++i) { auto &p = places_[i]; auto &lod_tensor = *lod_tensors[i]; void *buffer = const_cast(lod_tensor.data()); if (dtype == -1) { dtype = platform::ToNCCLDataType(lod_tensor.type()); } if (numel == 0) { numel = static_cast(lod_tensor.numel()); } int dev_id = boost::get(p).device; auto &nccl_ctx = nccl_ctxs_->at(dev_id); auto stream = nccl_ctx.stream(); auto comm = nccl_ctx.comm_; all_reduce_calls.emplace_back([=] { PADDLE_ENFORCE(platform::dynload::ncclAllReduce( buffer, buffer, numel, static_cast(dtype), ncclSum, comm, stream)); }); } this->RunAndRecordEvent([&] { if (all_reduce_calls.size() == 1UL) { // Do not use NCCLGroup when manage NCCL by per thread per device all_reduce_calls[0](); } else { platform::NCCLGroupGuard guard; for (auto &call : all_reduce_calls) { call(); } } }); if (FLAGS_sync_nccl_allreduce) { for (auto &p : places_) { int dev_id = boost::get(p).device; auto &nccl_ctx = nccl_ctxs_->at(dev_id); auto stream = nccl_ctx.stream(); cudaStreamSynchronize(stream); } } #else PADDLE_THROW("Not compiled with CUDA"); #endif } else { // Special handle CPU only Operator's gradient. Like CRF auto &trg = *this->local_scopes_[0] ->FindVar(kLocalExecScopeName) ->Get() ->FindVar(out_var_handles[0]->name()) ->GetMutable(); // Reduce All Tensor to trg in CPU ReduceLoDTensor func(lod_tensors, &trg); VisitDataType(lod_tensors[0]->type(), func); for (size_t i = 1; i < local_scopes_.size(); ++i) { auto &scope = *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get(); auto &p = places_[i]; auto *var = scope.FindVar(out_var_handles[i]->name()); auto *dev_ctx = dev_ctxes_.at(p); RunAndRecordEvent(p, [&trg, var, dev_ctx, p] { auto &tensor_gpu = *var->GetMutable(); auto &tensor_cpu = trg; TensorCopy(tensor_cpu, p, *dev_ctx, &tensor_gpu); }); } } } std::string AllReduceOpHandle::Name() const { return "all_reduce"; } } // namespace details } // namespace framework } // namespace paddle