# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import six import paddle.fluid as fluid from paddle.fluid import Program, program_guard from op_test import OpTest, skip_check_grad_ci class TestPReluOpError(unittest.TestCase): def test_errors(self): with program_guard(Program()): # The input type must be Variable. self.assertRaises(TypeError, fluid.layers.prelu, 0.1, 'all') # The input dtype must be float16, float32, float64. x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') self.assertRaises(TypeError, fluid.layers.prelu, x_int32, 'all') # support the input dtype is float32 x_fp16 = fluid.layers.data( name='x_fp16', shape=[12, 10], dtype='float32') fluid.layers.prelu(x_fp16, 'all') class PReluTest(OpTest): def setUp(self): self.init_input_shape() self.init_attr() self.op_type = "prelu" x_np = np.random.uniform(-1, 1, self.x_shape) # Since zero point in prelu is not differentiable, avoid randomize # zero. x_np[np.abs(x_np) < 0.005] = 0.02 if self.attrs == {'mode': "all"}: alpha_np = np.random.uniform(-1, -0.5, (1)) elif self.attrs == {'mode': "channel"}: alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1]) else: alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:]) self.inputs = {'X': x_np, 'Alpha': alpha_np} # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:]) # since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1) reshaped_alpha = self.inputs['Alpha'] if self.attrs == {'mode': "channel"}: reshaped_alpha = np.reshape( self.inputs['Alpha'], [1, self.x_shape[1]] + [1] * len(self.x_shape[2:])) out_np = np.maximum(self.inputs['X'], 0.) out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha assert out_np is not self.inputs['X'] self.outputs = {'Out': out_np} def init_input_shape(self): self.x_shape = [2, 100, 3, 4] def init_attr(self): self.attrs = {'mode': "channel"} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'Alpha'], 'Out') @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAll(PReluTest): def init_input_shape(self): self.x_shape = [2, 3, 4, 5] def init_attr(self): self.attrs = {'mode': "all"} class TestModeElt(PReluTest): def init_input_shape(self): self.x_shape = [3, 2, 5, 10] def init_attr(self): self.attrs = {'mode': "element"} @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAllRank3(PReluTest): def init_input_shape(self): self.x_shape = [1, 200, 3] def init_attr(self): self.attrs = {'mode': "all"} @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAllRank6(PReluTest): def init_input_shape(self): self.x_shape = [1, 2, 3, 4, 5, 6] def init_attr(self): self.attrs = {'mode': "all"} class TestModeChannelRank3(PReluTest): def init_input_shape(self): self.x_shape = [1, 200, 3] def init_attr(self): self.attrs = {'mode': "channel"} class TestModeChannelRank6(PReluTest): def init_input_shape(self): self.x_shape = [1, 100, 2, 2, 2, 2] def init_attr(self): self.attrs = {'mode': "channel"} class TestModeElementRank3(PReluTest): def init_input_shape(self): self.x_shape = [3, 10, 10] def init_attr(self): self.attrs = {'mode': "element"} class TestModeElementRank6(PReluTest): def init_input_shape(self): self.x_shape = [3, 2, 2, 4, 5, 2] def init_attr(self): self.attrs = {'mode': "element"} def prelu_t(x, mode, param_attr=None, name=None): helper = fluid.layer_helper.LayerHelper('prelu', **locals()) alpha_shape = [1, x.shape[1], 1, 1] dtype = helper.input_dtype(input_param_name='x') alpha = helper.create_parameter( attr=helper.param_attr, shape=alpha_shape, dtype='float32', is_bias=False, default_initializer=fluid.initializer.ConstantInitializer(0.25)) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prelu", inputs={"X": x, 'Alpha': alpha}, attrs={"mode": mode}, outputs={"Out": out}) return out # error message test if mode is not one of 'all', 'channel', 'element' class TestModeError(unittest.TestCase): def test_mode_error(self): main_program = Program() with fluid.program_guard(main_program, Program()): x = fluid.data(name='x', shape=[2, 3, 4, 5]) try: y = prelu_t(x, 'any') except Exception as e: assert (e.args[0].find('InvalidArgumentError') != -1) if __name__ == "__main__": unittest.main()