import paddle.v2 as paddle def main(): paddle.init(use_gpu=False, trainer_count=1) # define network topology images = paddle.layer.data( name='pixel', type=paddle.data_type.dense_vector(784)) label = paddle.layer.data( name='label', type=paddle.data_type.integer_value(10)) hidden1 = paddle.layer.fc(input=images, size=200) hidden2 = paddle.layer.fc(input=hidden1, size=200) inference = paddle.layer.fc(input=hidden2, size=10, act=paddle.activation.Softmax()) cost = paddle.layer.classification_cost(input=inference, label=label) parameters = paddle.parameters.create(cost) adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01) trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=adam_optimizer) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1000 == 0: result = trainer.test(reader=paddle.reader.batched( paddle.dataset.mnist.test(), batch_size=256)) print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics, result.metrics) else: pass trainer.train( reader=paddle.reader.batched( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=32), event_handler=event_handler) # output is a softmax layer. It returns probabilities. # Shape should be (100, 10) probs = paddle.infer( output=inference, parameters=parameters, reader=paddle.reader.batched( paddle.reader.limited( paddle.reader.map_readers(lambda item: (item[0], ), paddle.dataset.mnist.test()), limit=100), batch_size=32)) print probs.shape if __name__ == '__main__': main()