/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #ifdef __NVCC__ #include #endif #ifdef __HIPCC__ #include #endif #include "paddle/fluid/operators/math.h" #include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; template #ifdef __HIPCC__ using BlockReduce = hipcub::BlockReduce; #else using BlockReduce = cub::BlockReduce; #endif template using BlockReduceTempStorage = typename BlockReduce::TempStorage; template __global__ void sequence_softmax_kernel(const T *in_data, const size_t *ref_lod, const size_t src_hight, T *out_data) { __shared__ BlockReduceTempStorage temp_storage; __shared__ T shared_max_data; __shared__ T shared_sum_data; for (int i = blockIdx.x; i < src_hight; i += gridDim.x) { size_t start = ref_lod[i]; size_t span = ref_lod[i + 1] - start; // Find the max ele T max_ele = -FLT_MAX; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; max_ele = max_ele > ele ? max_ele : ele; } #ifdef __HIPCC__ max_ele = BlockReduce(temp_storage).Reduce(max_ele, hipcub::Max()); #else max_ele = BlockReduce(temp_storage).Reduce(max_ele, cub::Max()); #endif if (threadIdx.x == 0) { shared_max_data = max_ele; } __syncthreads(); // sum T sum_data = 0; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; sum_data += real_exp(ele - shared_max_data); } #ifdef __HIPCC__ sum_data = BlockReduce(temp_storage).Reduce(sum_data, hipcub::Sum()); #else sum_data = BlockReduce(temp_storage).Reduce(sum_data, cub::Sum()); #endif if (threadIdx.x == 0) { shared_sum_data = sum_data; } __syncthreads(); // get final resit for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; ele = real_exp(ele - shared_max_data) / shared_sum_data; out_data[start + tid] = ele; } } } template __global__ void sequence_softmax_grad_kernel(const T *softmax_grad_data, const T *softmax_data, const size_t *ref_lod, const size_t src_hight, T *dx_data) { __shared__ BlockReduceTempStorage temp_storage; __shared__ T shared_data; for (int i = blockIdx.x; i < src_hight; i += gridDim.x) { size_t start = ref_lod[i]; size_t span = ref_lod[i + 1] - start; T result = 0; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { size_t idx = start + tid; T s_g_d = softmax_grad_data[idx]; T s_d = softmax_data[idx]; result += s_g_d * s_d; } #ifdef __HIPCC__ result = BlockReduce(temp_storage).Reduce(result, hipcub::Sum()); #else result = BlockReduce(temp_storage).Reduce(result, cub::Sum()); #endif if (threadIdx.x == 0) { shared_data = result; } __syncthreads(); for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { size_t idx = start + tid; T s_g_d = softmax_grad_data[idx]; T s_d = softmax_data[idx]; dx_data[idx] = (s_g_d - shared_data) * s_d; } } } template struct SequenceSoftmaxFunctor { void operator()(const platform::CUDADeviceContext &context, const LoDTensor &x, const framework::Vector &ref_lod, /*referenced lod*/ LoDTensor *out) { int height = ref_lod.size() - 1; const int kThreadsPerBlock = 32; int thread_x = kThreadsPerBlock; int max_threads = context.GetMaxPhysicalThreadCount(); int max_blocks = std::max(max_threads / kThreadsPerBlock, 1); dim3 block_size(thread_x); dim3 grid_size(max_blocks); sequence_softmax_kernel< T, kThreadsPerBlock><<>>( x.data(), ref_lod.CUDAData(context.GetPlace()), height, out->mutable_data(context.GetPlace())); } }; template struct SequenceSoftmaxGradFunctor { void operator()(const platform::CUDADeviceContext &context, const LoDTensor &dout, const LoDTensor &out, const framework::Vector &ref_lod, /*referenced lod*/ LoDTensor *dx) { size_t height = ref_lod.size() - 1; const int kThreadsPerBlock = 32; int thread_x = kThreadsPerBlock; int max_threads = context.GetMaxPhysicalThreadCount(); int max_blocks = std::max(max_threads / kThreadsPerBlock, 1); dim3 block_size(thread_x); dim3 grid_size(max_blocks); sequence_softmax_grad_kernel< T, kThreadsPerBlock><<>>( dout.data(), out.data(), ref_lod.CUDAData(context.GetPlace()), height, dx->mutable_data(context.GetPlace())); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( sequence_softmax, ops::SequenceSoftmaxKernel, ops::SequenceSoftmaxKernel); REGISTER_OP_CUDA_KERNEL( sequence_softmax_grad, ops::SequenceSoftmaxGradKernel, ops::SequenceSoftmaxGradKernel);