import unittest import numpy as np from op_test import OpTest class TestExp(OpTest): def setUp(self): self.op_type = "exp" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.exp(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestSigmoid(OpTest): def setUp(self): self.op_type = "sigmoid" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.008) class TestLogSigmoid(OpTest): def setUp(self): self.op_type = "logsigmoid" self.inputs = { 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.log(1 / (1 + np.exp(-self.inputs['X'])))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.008) class TestTanh(OpTest): def setUp(self): self.op_type = "tanh" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.tanh(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestTanhShrink(OpTest): def setUp(self): self.op_type = "tanh_shrink" self.inputs = { 'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32") } self.outputs = {'Y': self.inputs['X'] - np.tanh(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.008) class TestHardShrink(OpTest): def setUp(self): self.op_type = "hard_shrink" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") threshold = 0.5 self.inputs = {'X': x} self.attrs = {'lambda': threshold} t = np.copy(x) t[(t >= -threshold) & (t <= threshold)] = 0 self.outputs = {'Y': t} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.005) class TestSoftShrink(OpTest): def setUp(self): self.op_type = "softshrink" lambda_val = 0.1 self.attrs = {'lambda': lambda_val} self.inputs = { 'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32") } y = np.copy(self.inputs['X']) y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * ( y - lambda_val) self.outputs = {'Y': y} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestSqrt(OpTest): def setUp(self): self.op_type = "sqrt" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.sqrt(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestAbs(OpTest): def setUp(self): self.op_type = "abs" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") # Because we set delta = 0.005 in caculating numeric gradient, # if x is too small, such as 0.002, x_neg will be -0.003 # x_pos will be 0.007, so the numeric gradient is unaccurate. # we should avoid this x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} self.outputs = {'Y': np.abs(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestRelu(OpTest): def setUp(self): self.op_type = "relu" x = np.random.uniform(-1, 1, [11, 17]).astype("float32") # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} self.outputs = {'Y': np.maximum(self.inputs['X'], 0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestBRelu(OpTest): def setUp(self): self.op_type = "brelu" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") t_min = 1.0 t_max = 4.0 # The same with TestAbs x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02 self.inputs = {'X': x} self.attrs = {'t_min': t_min, 't_max': t_max} t = np.copy(x) t[t < t_min] = t_min t[t > t_max] = t_max self.outputs = {'Y': t} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.02) class TestRelu6(OpTest): def setUp(self): self.op_type = "relu6" x = np.random.uniform(-1, 1, [4, 10]).astype("float32") threshold = 6.0 # The same with TestAbs x[np.abs(x) < 0.005] = 0.02 x[np.abs(x - threshold) < 0.005] = threshold + 0.02 self.inputs = {'X': x} self.attrs = {'threshold': threshold} self.outputs = { 'Y': np.minimum(np.maximum(self.inputs['X'], 0), threshold) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.02) class TestSoftRelu(OpTest): def setUp(self): self.op_type = "soft_relu" x = np.random.uniform(-3, 3, [4, 4]).astype("float32") threshold = 2.0 # The same reason with TestAbs x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold + 0.02 self.inputs = {'X': x} self.attrs = {'threshold': threshold} t = np.copy(x) t[t < -threshold] = -threshold t[t > threshold] = threshold self.outputs = {'Y': np.log((np.exp(t) + 1))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.02) class TestELU(OpTest): def setUp(self): self.op_type = "elu" x = np.random.uniform(-3, 3, [4, 4]).astype("float32") alpha = 1. # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1) # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here self.inputs = {'X': x} self.attrs = {'alpha': alpha} self.outputs = { 'Y': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.02) class TestReciprocal(OpTest): def setUp(self): self.op_type = "reciprocal" self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} self.outputs = {'Y': np.reciprocal(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.01) class TestLog(OpTest): def setUp(self): self.op_type = "log" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.log(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestSquare(OpTest): def setUp(self): self.op_type = "square" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.square(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestPow(OpTest): def setUp(self): self.op_type = "pow" self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} self.attrs = {'factor': 3.0} self.outputs = {'Y': np.power(self.inputs['X'], 3)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.02) class TestSTanh(OpTest): def setUp(self): self.op_type = "stanh" self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } scale_a = 2.0 / 3.0 scale_b = 1.7159 self.attrs = {'scale_a': scale_a, 'scale_b': scale_b} self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestSoftplus(OpTest): def setUp(self): self.op_type = "softplus" self.inputs = { 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") } self.outputs = {'Y': np.log(1 + np.exp(self.inputs['X']))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestSoftsign(OpTest): def setUp(self): self.op_type = "softsign" self.inputs = { 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") } self.outputs = { 'Y': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X'])) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.007) class TestThresholdedRelu(OpTest): def setUp(self): self.op_type = "thresholded_relu" threshold = 0.25 self.relative_error = 0.005 X = np.random.uniform(-1, 1, [11, 17]).astype("float32") # Same reason as TestAbs X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2 self.inputs = {'X': X} self.attrs = {'threshold': threshold} self.outputs = {'Y': (X > threshold) * X} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=self.relative_error) class TestHardSigmoid(OpTest): def setUp(self): self.op_type = "hard_sigmoid" self.relative_error = 0.002 X = np.random.uniform(-5, 5, [2, 2]).astype("float32") slope = 0.2 offset = 0.5 lower_threshold = -offset / slope upper_threshold = (1 - offset) / slope self.inputs = {'X': X} # Same reason as TestAbs X[np.abs(X - lower_threshold) < self.relative_error] = \ lower_threshold + 0.2 X[np.abs(X - upper_threshold) < self.relative_error] = \ upper_threshold - 0.2 temp = X * slope + offset self.outputs = {'Y': np.maximum(0.0, np.minimum(1.0, temp))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Y', max_relative_error=0.002) if __name__ == "__main__": unittest.main()