# copyright (c) 2020 paddlepaddle authors. all rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import numpy as np import shutil import tempfile from paddle import fluid from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict class LeNetDygraph(fluid.dygraph.Layer): def __init__(self, num_classes=10, classifier_activation='softmax'): super(LeNetDygraph, self).__init__() self.num_classes = num_classes self.features = Sequential( Conv2d( 1, 6, 3, stride=1, padding=1), ReLU(), Pool2D(2, 'max', 2), Conv2d( 6, 16, 5, stride=1, padding=0), ReLU(), Pool2D(2, 'max', 2)) if num_classes > 0: self.fc = Sequential( Linear(400, 120), Linear(120, 84), Linear(84, 10), Softmax()) #Todo: accept any activation def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = fluid.layers.flatten(x, 1) x = self.fc(x) return x class TestUncombinedWeight2StateDict(unittest.TestCase): @classmethod def setUpClass(cls): cls.save_dir = tempfile.mkdtemp() @classmethod def tearDownClass(cls): shutil.rmtree(cls.save_dir) def test_infer(self): start_prog = fluid.Program() train_prog = fluid.Program() x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32') with fluid.program_guard(train_prog, start_prog): with fluid.unique_name.guard(): x = fluid.data( name='x', shape=[None, 1, 28, 28], dtype='float32') model = LeNetDygraph() output = model.forward(x) excutor = fluid.Executor() excutor.run(start_prog) test_prog = train_prog.clone(for_test=True) fluid.io.save_params(excutor, self.save_dir, test_prog) rand_x = np.random.rand(1, 1, 28, 28).astype('float32') out = excutor.run(program=test_prog, feed={'x': rand_x}, fetch_list=[output.name], return_numpy=True) state_dict = uncombined_weight_to_state_dict(self.save_dir) key2key_dict = { 'features.0.weight': 'conv2d_0.w_0', 'features.0.bias': 'conv2d_0.b_0', 'features.3.weight': 'conv2d_1.w_0', 'features.3.bias': 'conv2d_1.b_0', 'fc.0.weight': 'linear_0.w_0', 'fc.0.bias': 'linear_0.b_0', 'fc.1.weight': 'linear_1.w_0', 'fc.1.bias': 'linear_1.b_0', 'fc.2.weight': 'linear_2.w_0', 'fc.2.bias': 'linear_2.b_0' } fluid.enable_imperative() dygraph_model = LeNetDygraph() converted_state_dict = dygraph_model.state_dict() for k1, k2 in key2key_dict.items(): converted_state_dict[k1] = state_dict[k2] dygraph_model.set_dict(converted_state_dict) dygraph_model.eval() dy_out = dygraph_model(fluid.dygraph.to_variable(rand_x)) np.testing.assert_allclose(dy_out.numpy(), out[0], atol=1e-5) if __name__ == '__main__': unittest.main()