# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid import paddle.fluid.core as core import numpy as np def npairloss(anchor, positive, labels, l2_reg=0.002): def softmax_cross_entropy_with_logits(logits, labels): logits = np.exp(logits) logits = logits / np.sum(logits, axis=1).reshape(-1, 1) return np.mean( -np.sum(labels * np.log(logits), axis=1), dtype=np.float32) batch_size = labels.shape[0] labels = np.reshape(labels, (batch_size, 1)) labels = np.equal(labels, labels.transpose()).astype(float) labels = labels / np.sum(labels, axis=1, keepdims=True) l2loss = np.mean(np.sum(np.power(anchor, 2), 1)) + np.mean( np.sum(np.power(positive, 2), 1)) l2loss = (l2loss * 0.25 * l2_reg).astype(np.float32) similarity_matrix = np.matmul(anchor, positive.transpose()) celoss = np.mean( softmax_cross_entropy_with_logits(similarity_matrix, labels)) return l2loss + celoss class TestNpairLossOp(unittest.TestCase): def setUp(self): self.dtype = np.float32 def __assert_close(self, tensor, np_array, msg, atol=1e-4): self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) def test_npair_loss(self): reg_lambda = 0.002 num_data, feat_dim, num_classes = 18, 6, 3 place = core.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32) embeddings_positive = np.random.rand(num_data, feat_dim).astype(np.float32) row_labels = np.random.randint( 0, num_classes, size=(num_data)).astype(np.float32) out_loss = npairloss( embeddings_anchor, embeddings_positive, row_labels, l2_reg=reg_lambda) anc = fluid.layers.data( dtype='float32', name='anc', shape=embeddings_anchor.shape, append_batch_size=False) pos = fluid.layers.data( dtype='float32', name='pos', shape=embeddings_positive.shape, append_batch_size=False) lab = fluid.layers.data( dtype='float32', name='lab', shape=row_labels.shape, append_batch_size=False) npair_loss_op = fluid.layers.npair_loss( anchor=anc, positive=pos, labels=lab, l2_reg=reg_lambda) out_tensor = exe.run(feed={ 'anc': embeddings_anchor, 'pos': embeddings_positive, 'lab': row_labels }, fetch_list=[npair_loss_op.name]) self.__assert_close( out_tensor, out_loss, "inference output are different at " + str(place) + ", " + str(np.dtype('float32')) + str(np.array(out_tensor)) + str(out_loss), atol=1e-3) if __name__ == '__main__': unittest.main()