/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/distributed/distributed.h" namespace paddle { namespace framework { class InferShapeContext; class OpDesc; class Scope; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative } // namespace paddle namespace paddle { namespace operators { namespace distributed { class RPCClient; } // namespace distributed class SendBarrierOp : public framework::OperatorBase { public: SendBarrierOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope& scope, const platform::Place& place) const override { auto is_half_async = Attr("half_async"); if (is_half_async) { distributed::Communicator::GetInstance()->Barrier(); return; } std::vector eps = Attr>("endpoints"); distributed::RPCClient* rpc_client = distributed::RPCClient::GetInstance( Attr("trainer_id")); VLOG(3) << "SendBarrierOp sync"; std::vector rets; for (auto& ep : eps) { VLOG(3) << "send barrier, ep: " << ep; rets.push_back(rpc_client->AsyncSendBatchBarrier(ep)); } for (size_t i = 0; i < rets.size(); i++) { PADDLE_ENFORCE_NE( rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout("internal error in RPCClient")); } } }; class SendBarrierOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() { AddInput("X", "(Any) Dummy inputs, used for control dependency") .AsDuplicable(); AddOutput("Out", "(Any) Dummy outputs, used for control dependency") .AsDuplicable(); AddComment(R"DOC( SendBarrier operator This operator will send a send barrier signal to list_and_serv op, so that the Parameter Server would knew all variables have been sent. )DOC"); AddAttr("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0); AddAttr>("endpoints", "(string vector, default 127.0.0.1:6164)" "Server endpoints to send variables to.") .SetDefault({"127.0.0.1:6164"}); AddAttr( "half_async", "(bool, default false)" "half_async=True is for half_async mode, this will send signal " "to HalfAsyncCommunicator Instance") .SetDefault(false); } }; class SendBarrierOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext* ctx) const override {} }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR( send_barrier, ops::SendBarrierOp, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker, ops::SendBarrierOpMaker, ops::SendBarrierOpShapeInference);