// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/distributed/parameter_send.h" #include #include #include "glog/logging.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/operators/distributed/communicator_common.h" #include "paddle/fluid/operators/distributed/distributed.h" #include "paddle/fluid/operators/distributed/request_handler.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace framework { class Scope; class Tensor; } // namespace framework } // namespace paddle namespace paddle { namespace operators { namespace distributed { class RPCClient; using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using DDim = framework::DDim; typedef std::vector> EP_SPLIT_TABLE_PAIRS; inline EP_SPLIT_TABLE_PAIRS GetMultiFieldCommContext( const CommContext &rpc_ctx, const framework::Scope &scope, int multi_parts) { EP_SPLIT_TABLE_PAIRS table_pairs; auto *send_var = scope.FindVar(rpc_ctx.var_name); if (send_var->IsType()) { PADDLE_ENFORCE_GE(multi_parts, 1, platform::errors::InvalidArgument( "multi_parts must == 1 in parameter send, now is: %d", multi_parts)); for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) { table_pairs.push_back( std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_varnames[i])); } } else { PADDLE_THROW(platform::errors::InvalidArgument( "GetMultiFieldCommContext unsupported LoDTensor current!")); } return table_pairs; } // namespace distributed void SendByNotifyRPC(const CommContext &rpc_ctx, const framework::Scope &scope) { auto cpu_ctx = paddle::platform::CPUDeviceContext(); auto &send_var_name = rpc_ctx.var_name; std::vector rets; distributed::RPCClient *rpc_client = distributed::RPCClient::GetInstance(rpc_ctx.trainer_id); if (NeedSend(scope, send_var_name)) { for (size_t j = 0; j < rpc_ctx.epmap.size(); j++) { auto &endpoint = rpc_ctx.epmap[j]; VLOG(4) << "sending " << send_var_name << " to " << endpoint; rets.push_back(rpc_client->AsyncDistributeNotify(endpoint, cpu_ctx, scope, send_var_name)); VLOG(4) << "send var " << send_var_name << " by notify RPC done"; } } else { VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.var_name; } for (auto &handle : rets) { PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout( "internal error in RPCClient")); } } template void ParameterSend::operator()(const CommContext &rpc_ctx, const framework::Scope &scope, bool sync, int multi_parts) { if (rpc_ctx.var_name == STEP_COUNTER) { SendByNotifyRPC(rpc_ctx, scope); return; } std::unique_ptr local_scope = scope.NewTmpScope(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &cpu_ctx = *pool.Get(platform::CPUPlace()); distributed::RPCClient *rpc_client = distributed::RPCClient::GetInstance(rpc_ctx.trainer_id); std::vector rets; auto *send_var = scope.FindVar(rpc_ctx.var_name); if (send_var->IsType()) { size_t out_num = rpc_ctx.splited_varnames.size(); if (out_num > 1) { auto &send_tensor = send_var->Get(); auto &send_tensor_dims = send_tensor.dims(); std::vector outs_dims; outs_dims.reserve(out_num); // infer output shape PADDLE_ENFORCE_EQ( rpc_ctx.height_sections.size(), out_num, platform::errors::InvalidArgument("tensor split sections size" "should be equal to output size.")); for (size_t i = 0; i < out_num; ++i) { auto dim = send_tensor_dims; dim[0] = rpc_ctx.height_sections[i]; outs_dims.push_back(dim); } // create output var in local scope size_t row_offset = 0; for (size_t i = 0; i < out_num; ++i) { framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[i]) ->GetMutable(); *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]); row_offset += outs_dims[i][0]; } } else { auto &send_tensor = send_var->Get(); framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[0]) ->GetMutable(); out->ShareDataWith(send_tensor); } for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) { auto &send_var_name = rpc_ctx.splited_varnames[i]; auto &endpoint = rpc_ctx.epmap[i]; VLOG(4) << " send var name: " << send_var_name << "endpoint: " << endpoint; if (NeedSend(*local_scope.get(), send_var_name)) { VLOG(3) << "sending " << send_var_name << " to " << endpoint; rets.push_back(rpc_client->AsyncSendVar( endpoint, cpu_ctx, *local_scope.get(), send_var_name)); VLOG(4) << "send var " << send_var_name << " async handle done"; } else { VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.splited_varnames[i]; } } } else if (send_var->IsType()) { auto &send_slr = send_var->Get(); auto &send_rows = send_slr.rows(); if (send_rows.size() == 0) { LOG(WARNING) << "WARNING: The variable sent to pserver is empty, which " "may cause an unknown error. Please check the state of " "use_double_buffer in pyreader/dataloader async mode, you need to " "turn it false."; } std::vector> outs_rows_idx; std::vector> outs_dense_idx; auto table_pairs = GetMultiFieldCommContext(rpc_ctx, scope, 1); outs_rows_idx.resize(table_pairs.size()); outs_dense_idx.resize(table_pairs.size()); auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0]; auto *src = send_slr.value().data(); // create output var in local scope std::vector outs; for (auto &table : table_pairs) { auto *out = local_scope->Var(table.second)->GetMutable(); outs.push_back(out); } if (!rpc_ctx.is_distributed) { auto pserver_num = rpc_ctx.epmap.size(); // split rows index into output sparse vars for (size_t i = 0; i < send_rows.size(); ++i) { auto ep_idx = send_rows[i] % pserver_num; auto id = send_rows[i] / pserver_num; outs_rows_idx[ep_idx].push_back(id); outs_dense_idx[ep_idx].push_back(i); } auto place = platform::CPUPlace(); for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size(); out_idx++) { auto rows_idx = outs_rows_idx[out_idx]; auto dims = send_slr.GetCompleteDims(); dims[0] = rows_idx.size(); outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]); outs[out_idx]->mutable_rows()->clear(); outs[out_idx]->mutable_value()->mutable_data(dims, send_slr.place()); if (rows_idx.size() > 0) { for (auto idx : rows_idx) { outs[out_idx]->mutable_rows()->push_back(idx); } auto dst = outs[out_idx]->mutable_value()->mutable_data(place); for (size_t j = 0; j < rows_idx.size(); j++) { if (platform::is_cpu_place(place)) { memory::Copy(platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(), src + outs_dense_idx[out_idx][j] * row_numel, sizeof(T) * row_numel); } else { PADDLE_THROW( platform::errors::Unimplemented("do not support GPU now")); } } } PADDLE_ENFORCE_EQ( rows_idx.size(), outs[out_idx]->rows().size(), platform::errors::InvalidArgument( "rows should has the same size with tensor dim 0")); } } else { auto pserver_num = rpc_ctx.epmap.size(); // split rows index into output sparse vars for (size_t i = 0; i < send_rows.size(); ++i) { auto out_idx = send_rows[i] % pserver_num; outs_rows_idx[out_idx].push_back(send_rows[i]); outs_dense_idx[out_idx].push_back(i); } auto place = platform::CPUPlace(); for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size(); out_idx++) { auto rows_idx = outs_rows_idx[out_idx]; auto dims = send_slr.GetCompleteDims(); dims[0] = rows_idx.size(); outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]); outs[out_idx]->mutable_rows()->clear(); outs[out_idx]->mutable_value()->mutable_data(dims, send_slr.place()); if (rows_idx.size() > 0) { for (auto idx : rows_idx) { outs[out_idx]->mutable_rows()->push_back(idx); } auto dst = outs[out_idx]->mutable_value()->mutable_data(place); for (size_t j = 0; j < rows_idx.size(); j++) { if (platform::is_cpu_place(place)) { memory::Copy(platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(), src + outs_dense_idx[out_idx][j] * row_numel, sizeof(T) * row_numel); } else { PADDLE_THROW( platform::errors::Unimplemented("do not support GPU now")); } } } PADDLE_ENFORCE_EQ( rows_idx.size(), outs[out_idx]->rows().size(), platform::errors::InvalidArgument( "rows should has the same size with tensor dim 0")); } } for (size_t i = 0; i < table_pairs.size(); i++) { auto &send_var_name = table_pairs[i].second; auto &endpoint = table_pairs[i].first; auto need_send = NeedSend(*local_scope.get(), send_var_name); VLOG(4) << "send var name: " << send_var_name << " send var endpoint: " << endpoint << " need send: " << need_send; if (need_send) { VLOG(4) << "sending " << send_var_name << " to " << endpoint; rets.push_back(rpc_client->AsyncSendVar( endpoint, cpu_ctx, *local_scope.get(), send_var_name)); VLOG(4) << "send var " << send_var_name << " async handle done"; } else { VLOG(4) << "don't send non-initialized variable: " << rpc_ctx.splited_varnames[i]; } } } else { PADDLE_THROW(platform::errors::InvalidArgument( "unsupported var type: %s to send!", send_var->Type())); } VLOG(4) << "Prepare to send var " << rpc_ctx.var_name; if (sync) { for (auto &handle : rets) { VLOG(4) << "Wait send var to pserver handle: " << handle; PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout( "internal error in RPCClient")); } } } template struct ParameterSend; }; // namespace distributed }; // namespace operators }; // namespace paddle