// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \ defined(PADDLE_WITH_ASCEND_CL) #include "paddle/fluid/framework/data_feed_factory.h" #include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/trainer.h" #include "paddle/fluid/framework/trainer_desc.pb.h" namespace paddle { namespace framework { void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc, Dataset* dataset) { const auto& section_params = trainer_desc.section_param(); const int num_pipeline_stages_ = section_params.num_pipeline_stages(); const int pipeline_stage_ = section_params.pipeline_stage(); const int schedule_mode_ = section_params.schedule_mode(); num_microbatches_ = section_params.num_microbatches(); VLOG(3) << "Number of microbatches per minibatch: " << num_microbatches_; trainer_desc_ = trainer_desc; ParseDumpConfig(trainer_desc); const auto& section_config = section_params.section_config(); int place_id = section_config.place_id(); #if (defined PADDLE_WITH_NCCL) || (defined PADDLE_WITH_RCCL) place_ = platform::CUDAPlace(place_id); #elif (defined PADDLE_WITH_ASCEND_CL) // NOLINT place_ = platform::NPUPlace(place_id); #endif worker_ = DeviceWorkerFactory::CreateDeviceWorker( trainer_desc.device_worker_name()); auto this_worker = std::dynamic_pointer_cast(worker_); this_worker->SetPlace(place_); this_worker->Initialize(trainer_desc); this_worker->SetMicrobatchNum(num_microbatches_); this_worker->SetPipelineStageNum(num_pipeline_stages_); this_worker->SetPipelineStage(pipeline_stage_); this_worker->SetScheduleMode(schedule_mode_); } void PipelineTrainer::InitOtherEnv(const ProgramDesc& main_program) { if (need_dump_field_) { InitDumpEnv(); } } std::string PipelineTrainer::GetDumpPath(int tid) { return string::format_string("%s/part-%05d", dump_fields_path_.c_str(), tid); } void PipelineTrainer::InitDumpEnv() { queue_ = paddle::framework::MakeChannel(); // TODO(sandyhouse): should make it as a config dump_thread_num_ = 1; for (int i = 0; i < dump_thread_num_; i++) { dump_thread_.push_back( std::thread(std::bind(&TrainerBase::DumpWork, this, i))); } } void PipelineTrainer::CopyParameters(int microbatch_id, const ProgramDesc& program, const platform::Place& place) { auto& global_block = program.Block(0); for (auto& var : global_block.AllVars()) { if (var->Persistable() && microbatch_id == 0) { auto* ptr = root_scope_->Var(var->Name()); InitializeVariable(ptr, var->GetType()); VLOG(5) << "Create persistable var: " << var->Name() << ", which pointer is " << ptr; } else if (!var->Persistable()) { auto* ptr = microbatch_scopes_[microbatch_id]->Var(var->Name()); VLOG(5) << "Create variable " << var->Name() << " for microbatch " << microbatch_id << ", which pointer is " << ptr; InitializeVariable(ptr, var->GetType()); } } } void PipelineTrainer::InitTrainerEnv(const ProgramDesc& main_program, const platform::Place& place) { PADDLE_ENFORCE_NOT_NULL(root_scope_, platform::errors::InvalidArgument( "root_scope_ can not be nullptr")); microbatch_scopes_.resize(num_microbatches_); VLOG(3) << "Create minibatch and microbatch scopes..."; minibatch_scope_ = &root_scope_->NewScope(); std::shared_ptr program; program.reset(new ProgramDesc( trainer_desc_.section_param().section_config().program_desc())); for (int j = 0; j < num_microbatches_; ++j) { microbatch_scopes_[j] = &minibatch_scope_->NewScope(); CopyParameters(j, *program, place_); } auto this_worker = std::dynamic_pointer_cast(worker_); this_worker->SetRootScope(root_scope_); this_worker->SetMinibatchScope(minibatch_scope_); this_worker->SetMicrobatchScopes(microbatch_scopes_); this_worker->PrepareUnusedVar(); } void PipelineTrainer::Run() { VLOG(5) << "Going to run PipelineTrainer::Run()"; try { worker_->TrainFiles(); } catch (platform::EOFException& e) { std::rethrow_exception(std::current_exception()); } for (auto* micro_scop : microbatch_scopes_) { // By default, we should delete all kid scopes after run executor because // some operators may create local scope when running, such as while_op. // But when while_op also create a local executor to run it's sub block, // the sub scopes it created should not be dropped immediately, because // while_grad_op will use some variables created during while_op run, so // we need to keep the kids and wait for the outer executor to drop them. micro_scop->DropKids(); } } void PipelineTrainer::Finalize() { if (need_dump_field_) { FinalizeDumpEnv(); } root_scope_->DropKids(); } Scope* PipelineTrainer::GetWorkerScope(int thread_id) { return microbatch_scopes_[0]; } } // end namespace framework } // end namespace paddle #endif