/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/platform/profiler.h" DEFINE_bool(profile, false, "Turn on profiler for fluid"); namespace paddle { namespace { // Timer for timer class Timer { public: double start; double startu; void tic() { struct timeval tp; gettimeofday(&tp, NULL); start = tp.tv_sec; startu = tp.tv_usec; } double toc() { struct timeval tp; gettimeofday(&tp, NULL); double used_time_ms = (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0; return used_time_ms; } }; template std::string num2str(T a) { std::stringstream istr; istr << a; return istr.str(); } } // namespace void NativePaddlePredictor::PrepareFeedFetch() { for (auto *op : inference_program_->Block(0).AllOps()) { if (op->Type() == "feed") { int idx = boost::get(op->GetAttr("col")); if (feeds_.size() <= static_cast(idx)) { feeds_.resize(idx + 1); } feeds_[idx] = op; feed_names_[op->Output("Out")[0]] = idx; } else if (op->Type() == "fetch") { int idx = boost::get(op->GetAttr("col")); if (fetchs_.size() <= static_cast(idx)) { fetchs_.resize(idx + 1); } fetchs_[idx] = op; } } } bool NativePaddlePredictor::Init( std::shared_ptr parent_scope) { VLOG(3) << "Predictor::init()"; if (FLAGS_profile) { LOG(WARNING) << "Profiler is actived, might affect the performance"; LOG(INFO) << "You can turn off by set gflags '-profile false'"; auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll : platform::ProfilerState::kCPU; platform::EnableProfiler(tracking_device); } if (config_.use_gpu) { place_ = paddle::platform::CUDAPlace(config_.device); } else { place_ = paddle::platform::CPUPlace(); } if (parent_scope) { scope_ = parent_scope; sub_scope_ = &(parent_scope->NewScope()); PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail"); } else { paddle::framework::InitDevices(false); scope_.reset(new paddle::framework::Scope()); } executor_.reset(new paddle::framework::Executor(place_)); // Initialize the inference program if (!config_.model_dir.empty()) { // Parameters are saved in separate files sited in // the specified `dirname`. inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(), config_.model_dir); } else if (!config_.prog_file.empty() && !config_.param_file.empty()) { // All parameters are saved in a single file. // The file names should be consistent with that used // in Python API `fluid.io.save_inference_model`. inference_program_ = paddle::inference::Load( executor_.get(), scope_.get(), config_.prog_file, config_.param_file); } else { LOG(ERROR) << "fail to load inference model."; return false; } ctx_ = executor_->Prepare(*inference_program_, 0); executor_->CreateVariables(*inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0); // Get the feed_target_names and fetch_target_names PrepareFeedFetch(); return true; } NativePaddlePredictor::~NativePaddlePredictor() { if (FLAGS_profile) { platform::DisableProfiler(platform::EventSortingKey::kTotal, "./profile.log"); } if (sub_scope_) { scope_->DeleteScope(sub_scope_); } } bool NativePaddlePredictor::Run(const std::vector &inputs, std::vector *output_data, int batch_size) { VLOG(3) << "Predictor::predict"; Timer timer; timer.tic(); // set feed variable std::vector feeds; framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get(); if (!SetFeed(inputs, scope)) { LOG(ERROR) << "fail to set feed"; return false; } // Run the inference program // if share variables, we need not create variables VLOG(4) << "Run prepared context"; executor_->RunPreparedContext(ctx_.get(), scope, false, /* don't create local scope each time*/ false /* don't create variable eatch time */); VLOG(4) << "Finish prepared context"; // get fetch variable if (!GetFetch(output_data, scope)) { LOG(ERROR) << "fail to get fetches"; return false; } VLOG(3) << "predict cost: " << timer.toc() << "ms"; return true; } std::unique_ptr NativePaddlePredictor::Clone() { VLOG(3) << "Predictor::clone"; std::unique_ptr cls(new NativePaddlePredictor(config_)); if (!dynamic_cast(cls.get())->Init(scope_)) { LOG(ERROR) << "fail to call Init"; return nullptr; } #ifdef __clang__ // fix clang compile error return cls; #else // fix manylinux compile error. return std::move(cls); #endif } bool NativePaddlePredictor::SetFeed(const std::vector &inputs, framework::Scope *scope) { VLOG(3) << "Predictor::set_feed"; if (inputs.size() != feeds_.size()) { LOG(ERROR) << "wrong feed input size."; return false; } for (size_t i = 0; i < inputs.size(); ++i) { framework::LoDTensor input; framework::DDim ddim = framework::make_ddim(inputs[i].shape); void *input_ptr; if (inputs[i].dtype == PaddleDType::INT64) { input_ptr = input.mutable_data(ddim, platform::CPUPlace()); } else if (inputs[i].dtype == PaddleDType::FLOAT32) { input_ptr = input.mutable_data(ddim, platform::CPUPlace()); } else { LOG(ERROR) << "unsupported feed type " << inputs[i].dtype; return false; } // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy. std::memcpy(static_cast(input_ptr), inputs[i].data.data(), inputs[i].data.length()); // TODO(Superjomn) Low performance, need optimization for heavy LoD copy. framework::LoD lod; for (auto &level : inputs[i].lod) { lod.emplace_back(level); } input.set_lod(lod); int idx = -1; if (config_.specify_input_name) { idx = feed_names_[inputs[i].name]; } else { idx = boost::get(feeds_[i]->GetAttr("col")); } framework::SetFeedVariable(scope, input, "feed", idx); } return true; } template void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch, PaddleTensor *output) { std::vector shape; auto dims_i = fetch.dims(); auto lod = fetch.lod(); const T *output_ptr = fetch.data(); auto num = fetch.numel(); std::vector data; if (0 == lod.size()) { std::copy(output_ptr, output_ptr + num, std::back_inserter(data)); for (int j = 0; j < dims_i.size(); ++j) { shape.push_back(dims_i[j]); } } else { // for batch detection // image[0] -> output[0] shape {145, 6} // image[1] -> output[1] shape {176, 6} // then, // the batch output shape {321, 6} // the lod {{0, 145, 321}} // so we should append output[0] to {176, 6} size_t max_dim = 0; for (size_t j = 1; j < lod[0].size(); j++) { max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]); } size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back(); if (max_dim > 0) { data.resize((lod[0].size() - 1) * max_dim * common_dim, 0); } for (size_t j = 1; j < lod[0].size(); j++) { size_t start = lod[0][j - 1] * common_dim; size_t end = lod[0][j] * common_dim; if (end > start) { std::copy(output_ptr + start, output_ptr + end, data.begin() + (j - 1) * max_dim * common_dim); } } shape.push_back(lod[0].size() - 1); shape.push_back(max_dim); for (int j = 1; j < dims_i.size(); ++j) { shape.push_back(dims_i[j]); } } output->shape = shape; auto &buffer = output->data; if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) { buffer.Resize(sizeof(T) * data.size()); } std::memcpy(buffer.data(), data.data(), buffer.length()); // copy LoD for (const auto &level : fetch.lod()) { output->lod.emplace_back(level); } } bool NativePaddlePredictor::GetFetch(std::vector *outputs, framework::Scope *scope) { VLOG(3) << "Predictor::get_fetch"; outputs->resize(fetchs_.size()); for (size_t i = 0; i < fetchs_.size(); ++i) { int idx = boost::get(fetchs_[i]->GetAttr("col")); PADDLE_ENFORCE((size_t)idx == i); framework::LoDTensor &fetch = framework::GetFetchVariable(*scope, "fetch", idx); auto type = fetch.type(); auto output = &(outputs->at(i)); if (type == typeid(float)) { GetFetchOne(fetch, output); output->dtype = PaddleDType::FLOAT32; } else if (type == typeid(int64_t)) { GetFetchOne(fetch, output); output->dtype = PaddleDType::INT64; } else { LOG(ERROR) << "unknown type, only support float32 and int64 now."; } } return true; } template <> std::unique_ptr CreatePaddlePredictor< NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) { VLOG(3) << "create NativePaddlePredictor"; if (config.use_gpu) { // 1. GPU memeroy PADDLE_ENFORCE_GT( config.fraction_of_gpu_memory, 0.f, "fraction_of_gpu_memory in the config should be set to range (0., 1.]"); PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device); std::vector flags; if (config.fraction_of_gpu_memory >= 0.0f || config.fraction_of_gpu_memory <= 0.95f) { flags.push_back("dummpy"); std::string flag = "--fraction_of_gpu_memory_to_use=" + num2str(config.fraction_of_gpu_memory); flags.push_back(flag); VLOG(3) << "set flag: " << flag; framework::InitGflags(flags); } } std::unique_ptr predictor(new NativePaddlePredictor(config)); if (!dynamic_cast(predictor.get())->Init(nullptr)) { return nullptr; } #ifdef __clang__ // fix clang compile error return predictor; #else return std::move(predictor); #endif } } // namespace paddle