// RUN: infrtexec -i %s module { func @main_graph(%arg0: !phi.dense_tensor_map, %arg1: !infrt.dense_tensor) -> !infrt.dense_tensor { %0 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_37.w_2"} -> !infrt.dense_tensor %1 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_47.w_0"} -> !infrt.dense_tensor %2 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_6.w_0"} -> !infrt.dense_tensor %3 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_13.w_0"} -> !infrt.dense_tensor %4 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_5.w_2"} -> !infrt.dense_tensor %5 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_40.w_1"} -> !infrt.dense_tensor %6 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_6.w_2"} -> !infrt.dense_tensor %7 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_27.w_1"} -> !infrt.dense_tensor %8 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_11.w_1"} -> !infrt.dense_tensor %9 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_40.b_0"} -> !infrt.dense_tensor %10 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_38.w_0"} -> !infrt.dense_tensor %11 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_2.w_0"} -> !infrt.dense_tensor %12 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_21.b_0"} -> !infrt.dense_tensor %13 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_15.w_1"} -> !infrt.dense_tensor %14 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_8.b_0"} -> !infrt.dense_tensor %15 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_29.w_0"} -> !infrt.dense_tensor %16 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_35.w_0"} -> !infrt.dense_tensor %17 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_26.w_0"} -> !infrt.dense_tensor %18 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_50.w_1"} -> !infrt.dense_tensor %19 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_31.b_0"} -> !infrt.dense_tensor %20 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_22.w_0"} -> !infrt.dense_tensor %21 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_27.w_0"} -> !infrt.dense_tensor %22 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_28.b_0"} -> !infrt.dense_tensor %23 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_46.w_2"} -> !infrt.dense_tensor %24 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_37.w_0"} -> !infrt.dense_tensor %25 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_18.w_0"} -> !infrt.dense_tensor %26 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_38.w_0"} -> !infrt.dense_tensor %27 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_39.w_0"} -> !infrt.dense_tensor %28 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_43.w_0"} -> !infrt.dense_tensor %29 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_3.w_0"} -> !infrt.dense_tensor %30 = phi_dt.tensor_map_get_tensor(%arg0) {name = "linear_0.b_0"} -> !infrt.dense_tensor %31 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_34.w_1"} -> !infrt.dense_tensor %32 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_49.w_0"} -> !infrt.dense_tensor %33 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_52.w_1"} -> !infrt.dense_tensor %34 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_8.w_0"} -> !infrt.dense_tensor %35 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_45.w_2"} -> !infrt.dense_tensor %36 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_43.b_0"} -> !infrt.dense_tensor %37 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_5.w_0"} -> !infrt.dense_tensor %38 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_29.w_2"} -> !infrt.dense_tensor %39 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_33.w_1"} -> !infrt.dense_tensor %40 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_10.w_0"} -> !infrt.dense_tensor %41 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_43.w_1"} -> !infrt.dense_tensor %42 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_9.w_1"} -> !infrt.dense_tensor %43 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_7.w_1"} -> !infrt.dense_tensor %44 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_7.w_0"} -> !infrt.dense_tensor %45 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_50.w_2"} -> !infrt.dense_tensor %46 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_40.w_0"} -> !infrt.dense_tensor %47 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_42.w_0"} -> !infrt.dense_tensor %48 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_42.w_1"} -> !infrt.dense_tensor %49 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_31.w_1"} -> !infrt.dense_tensor %50 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_7.b_0"} -> !infrt.dense_tensor %51 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_12.w_1"} -> !infrt.dense_tensor %52 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_39.w_0"} -> !infrt.dense_tensor %53 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_30.w_1"} -> !infrt.dense_tensor %54 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_13.b_0"} -> !infrt.dense_tensor %55 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_46.b_0"} -> !infrt.dense_tensor %56 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_36.w_1"} -> !infrt.dense_tensor %57 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_29.w_1"} -> !infrt.dense_tensor %58 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_36.w_2"} -> !infrt.dense_tensor %59 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_49.b_0"} -> !infrt.dense_tensor %60 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_29.w_0"} -> !infrt.dense_tensor %61 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_28.w_1"} -> !infrt.dense_tensor %62 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_51.w_2"} -> !infrt.dense_tensor %63 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_27.b_0"} -> !infrt.dense_tensor %64 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_47.w_0"} -> !infrt.dense_tensor %65 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_30.w_0"} -> !infrt.dense_tensor %66 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_33.w_0"} -> !infrt.dense_tensor %67 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_24.w_2"} -> !infrt.dense_tensor %68 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_22.w_1"} -> !infrt.dense_tensor %69 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_1.w_1"} -> !infrt.dense_tensor %70 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_32.w_0"} -> !infrt.dense_tensor %71 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_20.w_2"} -> !infrt.dense_tensor %72 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_16.w_0"} -> !infrt.dense_tensor %73 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_23.w_1"} -> !infrt.dense_tensor %74 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_11.w_0"} -> !infrt.dense_tensor %75 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_30.w_0"} -> !infrt.dense_tensor %76 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_37.w_0"} -> !infrt.dense_tensor %77 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_16.b_0"} -> !infrt.dense_tensor %78 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_36.b_0"} -> !infrt.dense_tensor %79 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_1.w_0"} -> !infrt.dense_tensor %80 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_31.w_0"} -> !infrt.dense_tensor %81 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_0.w_2"} -> !infrt.dense_tensor %82 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_10.w_2"} -> !infrt.dense_tensor %83 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_1.w_2"} -> !infrt.dense_tensor %84 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_13.w_0"} -> !infrt.dense_tensor %85 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_12.b_0"} -> !infrt.dense_tensor %86 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_0.w_0"} -> !infrt.dense_tensor %87 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_30.b_0"} -> !infrt.dense_tensor %88 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_13.w_1"} -> !infrt.dense_tensor %89 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_3.w_1"} -> !infrt.dense_tensor %90 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_52.b_0"} -> !infrt.dense_tensor %91 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_26.b_0"} -> !infrt.dense_tensor %92 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_48.w_2"} -> !infrt.dense_tensor %93 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_25.b_0"} -> !infrt.dense_tensor %94 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_33.b_0"} -> !infrt.dense_tensor %95 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_30.w_2"} -> !infrt.dense_tensor %96 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_35.w_1"} -> !infrt.dense_tensor %97 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_8.w_0"} -> !infrt.dense_tensor %98 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_18.w_0"} -> !infrt.dense_tensor %99 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_4.w_0"} -> !infrt.dense_tensor %100 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_15.b_0"} -> !infrt.dense_tensor %101 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_16.w_2"} -> !infrt.dense_tensor %102 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_32.w_1"} -> !infrt.dense_tensor %103 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_50.b_0"} -> !infrt.dense_tensor %104 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_44.w_0"} -> !infrt.dense_tensor %105 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_24.w_0"} -> !infrt.dense_tensor %106 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_11.w_2"} -> !infrt.dense_tensor %107 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_2.b_0"} -> !infrt.dense_tensor %108 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_20.w_0"} -> !infrt.dense_tensor %109 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_15.w_2"} -> !infrt.dense_tensor %110 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_44.w_1"} -> !infrt.dense_tensor %111 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_23.w_0"} -> !infrt.dense_tensor %112 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_17.w_2"} -> !infrt.dense_tensor %113 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_25.w_0"} -> !infrt.dense_tensor %114 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_3.w_2"} -> !infrt.dense_tensor %115 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_0.w_1"} -> !infrt.dense_tensor %116 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_38.w_1"} -> !infrt.dense_tensor %117 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_20.w_0"} -> !infrt.dense_tensor %118 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_47.w_1"} -> !infrt.dense_tensor %119 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_50.w_0"} -> !infrt.dense_tensor %120 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_48.b_0"} -> !infrt.dense_tensor %121 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_14.b_0"} -> !infrt.dense_tensor %122 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_47.b_0"} -> !infrt.dense_tensor %123 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_46.w_1"} -> !infrt.dense_tensor %124 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_34.w_0"} -> !infrt.dense_tensor %125 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_45.b_0"} -> !infrt.dense_tensor %126 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_25.w_1"} -> !infrt.dense_tensor %127 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_22.w_2"} -> !infrt.dense_tensor %128 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_21.w_2"} -> !infrt.dense_tensor %129 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_17.w_0"} -> !infrt.dense_tensor %130 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_19.b_0"} -> !infrt.dense_tensor %131 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_1.b_0"} -> !infrt.dense_tensor %132 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_52.w_0"} -> !infrt.dense_tensor %133 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_21.w_1"} -> !infrt.dense_tensor %134 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_9.w_0"} -> !infrt.dense_tensor %135 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_4.b_0"} -> !infrt.dense_tensor %136 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_9.w_2"} -> !infrt.dense_tensor %137 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_45.w_0"} -> !infrt.dense_tensor %138 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_8.w_2"} -> !infrt.dense_tensor %139 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_35.w_0"} -> !infrt.dense_tensor %140 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_39.w_1"} -> !infrt.dense_tensor %141 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_44.w_2"} -> !infrt.dense_tensor %142 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_19.w_2"} -> !infrt.dense_tensor %143 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_27.w_0"} -> !infrt.dense_tensor %144 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_2.w_1"} -> !infrt.dense_tensor %145 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_19.w_0"} -> !infrt.dense_tensor %146 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_23.w_2"} -> !infrt.dense_tensor %147 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_32.w_2"} -> !infrt.dense_tensor %148 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_51.w_0"} -> !infrt.dense_tensor %149 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_17.b_0"} -> !infrt.dense_tensor %150 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_2.w_0"} -> !infrt.dense_tensor %151 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_15.w_0"} -> !infrt.dense_tensor %152 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_23.w_0"} -> !infrt.dense_tensor %153 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_18.w_1"} -> !infrt.dense_tensor %154 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_1.w_0"} -> !infrt.dense_tensor %155 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_21.w_0"} -> !infrt.dense_tensor %156 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_37.b_0"} -> !infrt.dense_tensor %157 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_28.w_0"} -> !infrt.dense_tensor %158 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_31.w_0"} -> !infrt.dense_tensor %159 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_3.b_0"} -> !infrt.dense_tensor %160 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_19.w_0"} -> !infrt.dense_tensor %161 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_38.b_0"} -> !infrt.dense_tensor %162 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_7.w_0"} -> !infrt.dense_tensor %163 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_33.w_2"} -> !infrt.dense_tensor %164 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_44.w_0"} -> !infrt.dense_tensor %165 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_25.w_2"} -> !infrt.dense_tensor %166 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_32.b_0"} -> !infrt.dense_tensor %167 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_26.w_2"} -> !infrt.dense_tensor %168 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_4.w_0"} -> !infrt.dense_tensor %169 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_40.w_2"} -> !infrt.dense_tensor %170 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_17.w_1"} -> !infrt.dense_tensor %171 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_5.w_1"} -> !infrt.dense_tensor %172 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_28.w_2"} -> !infrt.dense_tensor %173 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_27.w_2"} -> !infrt.dense_tensor %174 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_20.w_1"} -> !infrt.dense_tensor %175 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_15.w_0"} -> !infrt.dense_tensor %176 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_18.b_0"} -> !infrt.dense_tensor %177 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_41.w_0"} -> !infrt.dense_tensor %178 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_42.w_0"} -> !infrt.dense_tensor %179 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_25.w_0"} -> !infrt.dense_tensor %180 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_22.b_0"} -> !infrt.dense_tensor %181 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_35.w_2"} -> !infrt.dense_tensor %182 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_24.w_0"} -> !infrt.dense_tensor %183 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_49.w_1"} -> !infrt.dense_tensor %184 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_22.w_0"} -> !infrt.dense_tensor %185 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_26.w_1"} -> !infrt.dense_tensor %186 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_12.w_2"} -> !infrt.dense_tensor %187 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_43.w_0"} -> !infrt.dense_tensor %188 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_38.w_2"} -> !infrt.dense_tensor %189 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_0.b_0"} -> !infrt.dense_tensor %190 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_50.w_0"} -> !infrt.dense_tensor %191 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_10.w_1"} -> !infrt.dense_tensor %192 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_19.w_1"} -> !infrt.dense_tensor %193 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_41.w_2"} -> !infrt.dense_tensor %194 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_10.b_0"} -> !infrt.dense_tensor %195 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_14.w_2"} -> !infrt.dense_tensor %196 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_14.w_0"} -> !infrt.dense_tensor %197 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_12.w_0"} -> !infrt.dense_tensor %198 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_9.b_0"} -> !infrt.dense_tensor %199 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_16.w_0"} -> !infrt.dense_tensor %200 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_29.b_0"} -> !infrt.dense_tensor %201 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_42.b_0"} -> !infrt.dense_tensor %202 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_2.w_2"} -> !infrt.dense_tensor %203 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_48.w_0"} -> !infrt.dense_tensor %204 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_14.w_1"} -> !infrt.dense_tensor %205 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_3.w_0"} -> !infrt.dense_tensor %206 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_6.w_0"} -> !infrt.dense_tensor %207 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_20.b_0"} -> !infrt.dense_tensor %208 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_39.b_0"} -> !infrt.dense_tensor %209 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_34.w_2"} -> !infrt.dense_tensor %210 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_16.w_1"} -> !infrt.dense_tensor %211 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_36.w_0"} -> !infrt.dense_tensor %212 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_48.w_1"} -> !infrt.dense_tensor %213 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_7.w_2"} -> !infrt.dense_tensor %214 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_32.w_0"} -> !infrt.dense_tensor %215 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_52.w_0"} -> !infrt.dense_tensor %216 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_18.w_2"} -> !infrt.dense_tensor %217 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_44.b_0"} -> !infrt.dense_tensor %218 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_6.b_0"} -> !infrt.dense_tensor %219 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_10.w_0"} -> !infrt.dense_tensor %220 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_47.w_2"} -> !infrt.dense_tensor %221 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_51.w_1"} -> !infrt.dense_tensor %222 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_9.w_0"} -> !infrt.dense_tensor %223 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_52.w_2"} -> !infrt.dense_tensor %224 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_45.w_1"} -> !infrt.dense_tensor %225 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_8.w_1"} -> !infrt.dense_tensor %226 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_13.w_2"} -> !infrt.dense_tensor %227 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_46.w_0"} -> !infrt.dense_tensor %228 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_49.w_2"} -> !infrt.dense_tensor %229 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_12.w_0"} -> !infrt.dense_tensor %230 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_4.w_2"} -> !infrt.dense_tensor %231 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_5.w_0"} -> !infrt.dense_tensor %232 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_51.b_0"} -> !infrt.dense_tensor %233 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_33.w_0"} -> !infrt.dense_tensor %234 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_46.w_0"} -> !infrt.dense_tensor %235 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_45.w_0"} -> !infrt.dense_tensor %236 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_6.w_1"} -> !infrt.dense_tensor %237 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_48.w_0"} -> !infrt.dense_tensor %238 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_37.w_1"} -> !infrt.dense_tensor %239 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_14.w_0"} -> !infrt.dense_tensor %240 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_21.w_0"} -> !infrt.dense_tensor %241 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_28.w_0"} -> !infrt.dense_tensor %242 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_26.w_0"} -> !infrt.dense_tensor %243 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_23.b_0"} -> !infrt.dense_tensor %244 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_49.w_0"} -> !infrt.dense_tensor %245 = phi_dt.tensor_map_get_tensor(%arg0) {name = "linear_0.w_0"} -> !infrt.dense_tensor %246 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_51.w_0"} -> !infrt.dense_tensor %247 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_41.w_0"} -> !infrt.dense_tensor %248 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_35.b_0"} -> !infrt.dense_tensor %249 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_42.w_2"} -> !infrt.dense_tensor %250 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_43.w_2"} -> !infrt.dense_tensor %251 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_24.w_1"} -> !infrt.dense_tensor %252 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_31.w_2"} -> !infrt.dense_tensor %253 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_41.w_1"} -> !infrt.dense_tensor %254 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_11.w_0"} -> !infrt.dense_tensor %255 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_41.b_0"} -> !infrt.dense_tensor %256 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_34.w_0"} -> !infrt.dense_tensor %257 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_4.w_1"} -> !infrt.dense_tensor %258 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_40.w_0"} -> !infrt.dense_tensor %259 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_0.w_0"} -> !infrt.dense_tensor %260 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_36.w_0"} -> !infrt.dense_tensor %261 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_5.b_0"} -> !infrt.dense_tensor %262 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_11.b_0"} -> !infrt.dense_tensor %263 = phi_dt.tensor_map_get_tensor(%arg0) {name = "conv2d_17.w_0"} -> !infrt.dense_tensor %264 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_39.w_2"} -> !infrt.dense_tensor %265 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_34.b_0"} -> !infrt.dense_tensor %266 = phi_dt.tensor_map_get_tensor(%arg0) {name = "batch_norm2d_24.b_0"} -> !infrt.dense_tensor %267 = "pd.conv2d"(%arg1, %86) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [3 : i32, 3 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y, %MeanOut, %VarianceOut = "pd.batch_norm"(%267, %259, %189, %115, %81) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %268 = "pd.relu"(%Y) : (!infrt.dense_tensor) -> !infrt.dense_tensor %269 = "pd.pool2d"(%268) {adaptive = false, ceil_mode = false, data_format = "NCHW", exclusive = true, global_pooling = false, ksize = [3 : i32, 3 : i32], padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], pooling_type = "max", strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor) -> !infrt.dense_tensor %270 = "pd.conv2d"(%269, %11) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_0, %MeanOut_1, %VarianceOut_2 = "pd.batch_norm"(%270, %150, %107, %144, %202) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %271 = "pd.relu"(%Y_0) : (!infrt.dense_tensor) -> !infrt.dense_tensor %272 = "pd.conv2d"(%271, %29) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_3, %MeanOut_4, %VarianceOut_5 = "pd.batch_norm"(%272, %205, %159, %89, %114) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %273 = "pd.relu"(%Y_3) : (!infrt.dense_tensor) -> !infrt.dense_tensor %274 = "pd.conv2d"(%273, %99) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_6, %MeanOut_7, %VarianceOut_8 = "pd.batch_norm"(%274, %168, %135, %257, %230) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %275 = "pd.conv2d"(%269, %154) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_9, %MeanOut_10, %VarianceOut_11 = "pd.batch_norm"(%275, %79, %131, %69, %83) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %276 = "pd.elementwise_add"(%Y_6, %Y_9) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %277 = "pd.relu"(%276) : (!infrt.dense_tensor) -> !infrt.dense_tensor %278 = "pd.conv2d"(%277, %231) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_12, %MeanOut_13, %VarianceOut_14 = "pd.batch_norm"(%278, %37, %261, %171, %4) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %279 = "pd.relu"(%Y_12) : (!infrt.dense_tensor) -> !infrt.dense_tensor %280 = "pd.conv2d"(%279, %2) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_15, %MeanOut_16, %VarianceOut_17 = "pd.batch_norm"(%280, %206, %218, %236, %6) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %281 = "pd.relu"(%Y_15) : (!infrt.dense_tensor) -> !infrt.dense_tensor %282 = "pd.conv2d"(%281, %44) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_18, %MeanOut_19, %VarianceOut_20 = "pd.batch_norm"(%282, %162, %50, %43, %213) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %283 = "pd.elementwise_add"(%Y_18, %277) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %284 = "pd.relu"(%283) : (!infrt.dense_tensor) -> !infrt.dense_tensor %285 = "pd.conv2d"(%284, %34) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_21, %MeanOut_22, %VarianceOut_23 = "pd.batch_norm"(%285, %97, %14, %225, %138) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %286 = "pd.relu"(%Y_21) : (!infrt.dense_tensor) -> !infrt.dense_tensor %287 = "pd.conv2d"(%286, %134) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_24, %MeanOut_25, %VarianceOut_26 = "pd.batch_norm"(%287, %222, %198, %42, %136) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %288 = "pd.relu"(%Y_24) : (!infrt.dense_tensor) -> !infrt.dense_tensor %289 = "pd.conv2d"(%288, %219) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_27, %MeanOut_28, %VarianceOut_29 = "pd.batch_norm"(%289, %40, %194, %191, %82) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %290 = "pd.elementwise_add"(%Y_27, %284) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %291 = "pd.relu"(%290) : (!infrt.dense_tensor) -> !infrt.dense_tensor %292 = "pd.conv2d"(%291, %197) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_30, %MeanOut_31, %VarianceOut_32 = "pd.batch_norm"(%292, %229, %85, %51, %186) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %293 = "pd.relu"(%Y_30) : (!infrt.dense_tensor) -> !infrt.dense_tensor %294 = "pd.conv2d"(%293, %84) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_33, %MeanOut_34, %VarianceOut_35 = "pd.batch_norm"(%294, %3, %54, %88, %226) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %295 = "pd.relu"(%Y_33) : (!infrt.dense_tensor) -> !infrt.dense_tensor %296 = "pd.conv2d"(%295, %239) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_36, %MeanOut_37, %VarianceOut_38 = "pd.batch_norm"(%296, %196, %121, %204, %195) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %297 = "pd.conv2d"(%291, %74) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_39, %MeanOut_40, %VarianceOut_41 = "pd.batch_norm"(%297, %254, %262, %8, %106) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %298 = "pd.elementwise_add"(%Y_36, %Y_39) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %299 = "pd.relu"(%298) : (!infrt.dense_tensor) -> !infrt.dense_tensor %300 = "pd.conv2d"(%299, %175) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_42, %MeanOut_43, %VarianceOut_44 = "pd.batch_norm"(%300, %151, %100, %13, %109) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %301 = "pd.relu"(%Y_42) : (!infrt.dense_tensor) -> !infrt.dense_tensor %302 = "pd.conv2d"(%301, %199) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_45, %MeanOut_46, %VarianceOut_47 = "pd.batch_norm"(%302, %72, %77, %210, %101) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %303 = "pd.relu"(%Y_45) : (!infrt.dense_tensor) -> !infrt.dense_tensor %304 = "pd.conv2d"(%303, %263) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_48, %MeanOut_49, %VarianceOut_50 = "pd.batch_norm"(%304, %129, %149, %170, %112) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %305 = "pd.elementwise_add"(%Y_48, %299) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %306 = "pd.relu"(%305) : (!infrt.dense_tensor) -> !infrt.dense_tensor %307 = "pd.conv2d"(%306, %25) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_51, %MeanOut_52, %VarianceOut_53 = "pd.batch_norm"(%307, %98, %176, %153, %216) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %308 = "pd.relu"(%Y_51) : (!infrt.dense_tensor) -> !infrt.dense_tensor %309 = "pd.conv2d"(%308, %160) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_54, %MeanOut_55, %VarianceOut_56 = "pd.batch_norm"(%309, %145, %130, %192, %142) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %310 = "pd.relu"(%Y_54) : (!infrt.dense_tensor) -> !infrt.dense_tensor %311 = "pd.conv2d"(%310, %108) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_57, %MeanOut_58, %VarianceOut_59 = "pd.batch_norm"(%311, %117, %207, %174, %71) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %312 = "pd.elementwise_add"(%Y_57, %306) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %313 = "pd.relu"(%312) : (!infrt.dense_tensor) -> !infrt.dense_tensor %314 = "pd.conv2d"(%313, %155) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_60, %MeanOut_61, %VarianceOut_62 = "pd.batch_norm"(%314, %240, %12, %133, %128) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %315 = "pd.relu"(%Y_60) : (!infrt.dense_tensor) -> !infrt.dense_tensor %316 = "pd.conv2d"(%315, %20) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_63, %MeanOut_64, %VarianceOut_65 = "pd.batch_norm"(%316, %184, %180, %68, %127) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %317 = "pd.relu"(%Y_63) : (!infrt.dense_tensor) -> !infrt.dense_tensor %318 = "pd.conv2d"(%317, %111) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_66, %MeanOut_67, %VarianceOut_68 = "pd.batch_norm"(%318, %152, %243, %73, %146) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %319 = "pd.elementwise_add"(%Y_66, %313) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %320 = "pd.relu"(%319) : (!infrt.dense_tensor) -> !infrt.dense_tensor %321 = "pd.conv2d"(%320, %113) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_69, %MeanOut_70, %VarianceOut_71 = "pd.batch_norm"(%321, %179, %93, %126, %165) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %322 = "pd.relu"(%Y_69) : (!infrt.dense_tensor) -> !infrt.dense_tensor %323 = "pd.conv2d"(%322, %242) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_72, %MeanOut_73, %VarianceOut_74 = "pd.batch_norm"(%323, %17, %91, %185, %167) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %324 = "pd.relu"(%Y_72) : (!infrt.dense_tensor) -> !infrt.dense_tensor %325 = "pd.conv2d"(%324, %21) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_75, %MeanOut_76, %VarianceOut_77 = "pd.batch_norm"(%325, %143, %63, %7, %173) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %326 = "pd.conv2d"(%320, %105) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_78, %MeanOut_79, %VarianceOut_80 = "pd.batch_norm"(%326, %182, %266, %251, %67) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %327 = "pd.elementwise_add"(%Y_75, %Y_78) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %328 = "pd.relu"(%327) : (!infrt.dense_tensor) -> !infrt.dense_tensor %329 = "pd.conv2d"(%328, %157) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_81, %MeanOut_82, %VarianceOut_83 = "pd.batch_norm"(%329, %241, %22, %61, %172) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %330 = "pd.relu"(%Y_81) : (!infrt.dense_tensor) -> !infrt.dense_tensor %331 = "pd.conv2d"(%330, %15) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_84, %MeanOut_85, %VarianceOut_86 = "pd.batch_norm"(%331, %60, %200, %57, %38) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %332 = "pd.relu"(%Y_84) : (!infrt.dense_tensor) -> !infrt.dense_tensor %333 = "pd.conv2d"(%332, %75) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_87, %MeanOut_88, %VarianceOut_89 = "pd.batch_norm"(%333, %65, %87, %53, %95) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %334 = "pd.elementwise_add"(%Y_87, %328) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %335 = "pd.relu"(%334) : (!infrt.dense_tensor) -> !infrt.dense_tensor %336 = "pd.conv2d"(%335, %158) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_90, %MeanOut_91, %VarianceOut_92 = "pd.batch_norm"(%336, %80, %19, %49, %252) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %337 = "pd.relu"(%Y_90) : (!infrt.dense_tensor) -> !infrt.dense_tensor %338 = "pd.conv2d"(%337, %214) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_93, %MeanOut_94, %VarianceOut_95 = "pd.batch_norm"(%338, %70, %166, %102, %147) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %339 = "pd.relu"(%Y_93) : (!infrt.dense_tensor) -> !infrt.dense_tensor %340 = "pd.conv2d"(%339, %233) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_96, %MeanOut_97, %VarianceOut_98 = "pd.batch_norm"(%340, %66, %94, %39, %163) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %341 = "pd.elementwise_add"(%Y_96, %335) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %342 = "pd.relu"(%341) : (!infrt.dense_tensor) -> !infrt.dense_tensor %343 = "pd.conv2d"(%342, %124) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_99, %MeanOut_100, %VarianceOut_101 = "pd.batch_norm"(%343, %256, %265, %31, %209) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %344 = "pd.relu"(%Y_99) : (!infrt.dense_tensor) -> !infrt.dense_tensor %345 = "pd.conv2d"(%344, %16) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_102, %MeanOut_103, %VarianceOut_104 = "pd.batch_norm"(%345, %139, %248, %96, %181) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %346 = "pd.relu"(%Y_102) : (!infrt.dense_tensor) -> !infrt.dense_tensor %347 = "pd.conv2d"(%346, %211) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_105, %MeanOut_106, %VarianceOut_107 = "pd.batch_norm"(%347, %260, %78, %56, %58) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %348 = "pd.elementwise_add"(%Y_105, %342) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %349 = "pd.relu"(%348) : (!infrt.dense_tensor) -> !infrt.dense_tensor %350 = "pd.conv2d"(%349, %24) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_108, %MeanOut_109, %VarianceOut_110 = "pd.batch_norm"(%350, %76, %156, %238, %0) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %351 = "pd.relu"(%Y_108) : (!infrt.dense_tensor) -> !infrt.dense_tensor %352 = "pd.conv2d"(%351, %26) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_111, %MeanOut_112, %VarianceOut_113 = "pd.batch_norm"(%352, %10, %161, %116, %188) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %353 = "pd.relu"(%Y_111) : (!infrt.dense_tensor) -> !infrt.dense_tensor %354 = "pd.conv2d"(%353, %27) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_114, %MeanOut_115, %VarianceOut_116 = "pd.batch_norm"(%354, %52, %208, %140, %264) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %355 = "pd.elementwise_add"(%Y_114, %349) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %356 = "pd.relu"(%355) : (!infrt.dense_tensor) -> !infrt.dense_tensor %357 = "pd.conv2d"(%356, %46) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_117, %MeanOut_118, %VarianceOut_119 = "pd.batch_norm"(%357, %258, %9, %5, %169) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %358 = "pd.relu"(%Y_117) : (!infrt.dense_tensor) -> !infrt.dense_tensor %359 = "pd.conv2d"(%358, %247) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_120, %MeanOut_121, %VarianceOut_122 = "pd.batch_norm"(%359, %177, %255, %253, %193) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %360 = "pd.relu"(%Y_120) : (!infrt.dense_tensor) -> !infrt.dense_tensor %361 = "pd.conv2d"(%360, %178) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_123, %MeanOut_124, %VarianceOut_125 = "pd.batch_norm"(%361, %47, %201, %48, %249) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %362 = "pd.elementwise_add"(%Y_123, %356) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %363 = "pd.relu"(%362) : (!infrt.dense_tensor) -> !infrt.dense_tensor %364 = "pd.conv2d"(%363, %104) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_126, %MeanOut_127, %VarianceOut_128 = "pd.batch_norm"(%364, %164, %217, %110, %141) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %365 = "pd.relu"(%Y_126) : (!infrt.dense_tensor) -> !infrt.dense_tensor %366 = "pd.conv2d"(%365, %235) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_129, %MeanOut_130, %VarianceOut_131 = "pd.batch_norm"(%366, %137, %125, %224, %35) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %367 = "pd.relu"(%Y_129) : (!infrt.dense_tensor) -> !infrt.dense_tensor %368 = "pd.conv2d"(%367, %234) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_132, %MeanOut_133, %VarianceOut_134 = "pd.batch_norm"(%368, %227, %55, %123, %23) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %369 = "pd.conv2d"(%363, %28) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_135, %MeanOut_136, %VarianceOut_137 = "pd.batch_norm"(%369, %187, %36, %41, %250) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %370 = "pd.elementwise_add"(%Y_132, %Y_135) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %371 = "pd.relu"(%370) : (!infrt.dense_tensor) -> !infrt.dense_tensor %372 = "pd.conv2d"(%371, %64) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_138, %MeanOut_139, %VarianceOut_140 = "pd.batch_norm"(%372, %1, %122, %118, %220) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %373 = "pd.relu"(%Y_138) : (!infrt.dense_tensor) -> !infrt.dense_tensor %374 = "pd.conv2d"(%373, %203) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_141, %MeanOut_142, %VarianceOut_143 = "pd.batch_norm"(%374, %237, %120, %212, %92) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %375 = "pd.relu"(%Y_141) : (!infrt.dense_tensor) -> !infrt.dense_tensor %376 = "pd.conv2d"(%375, %32) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_144, %MeanOut_145, %VarianceOut_146 = "pd.batch_norm"(%376, %244, %59, %183, %228) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %377 = "pd.elementwise_add"(%Y_144, %371) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %378 = "pd.relu"(%377) : (!infrt.dense_tensor) -> !infrt.dense_tensor %379 = "pd.conv2d"(%378, %190) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_147, %MeanOut_148, %VarianceOut_149 = "pd.batch_norm"(%379, %119, %103, %18, %45) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %380 = "pd.relu"(%Y_147) : (!infrt.dense_tensor) -> !infrt.dense_tensor %381 = "pd.conv2d"(%380, %246) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_150, %MeanOut_151, %VarianceOut_152 = "pd.batch_norm"(%381, %148, %232, %221, %62) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %382 = "pd.relu"(%Y_150) : (!infrt.dense_tensor) -> !infrt.dense_tensor %383 = "pd.conv2d"(%382, %132) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %Y_153, %MeanOut_154, %VarianceOut_155 = "pd.batch_norm"(%383, %215, %90, %33, %223) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor, !infrt.dense_tensor) %384 = "pd.elementwise_add"(%Y_153, %378) {axis = -1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %385 = "pd.relu"(%384) : (!infrt.dense_tensor) -> !infrt.dense_tensor %386 = "pd.pool2d"(%385) {adaptive = true, ceil_mode = false, data_format = "NCHW", exclusive = true, global_pooling = false, ksize = [1 : i32, 1 : i32], padding_algorithm = "EXPLICIT", paddings = [0 : i32, 0 : i32], pooling_type = "avg", strides = [1 : i32, 1 : i32]} : (!infrt.dense_tensor) -> !infrt.dense_tensor %387 = "pd.flatten_contiguous_range"(%386) {start_axis = 1 : si32, stop_axis = 3 : si32} : (!infrt.dense_tensor) -> !infrt.dense_tensor %388 = "pd.matmul_v2"(%387, %245) {trans_x = false, trans_y = false} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor %389 = "pd.elementwise_add"(%388, %30) {axis = 1 : si32} : (!infrt.dense_tensor, !infrt.dense_tensor) -> !infrt.dense_tensor infrt.return %389 : !infrt.dense_tensor } func @main() { %ctx = "phi_dt.create_context.cpu" (): () -> !phi.context %1 = "phi_dt.create_inited_dense_tensor.cpu.f32" (%ctx) {value = 12.0 : f32, layout=#infrt.layout, lod=[1:i64], dims=[1, 3, 256, 256]}: (!phi.context) -> (!infrt.dense_tensor) %map = phi_dt.load_combined_params(){model_path="@CMAKE_BINARY_DIR@/models/resnet50/model.pdmodel",params_path="@CMAKE_BINARY_DIR@/models/resnet50/model.pdiparams"} %2 = infrt.call@main_graph(%map, %1) : (!phi.dense_tensor_map, !infrt.dense_tensor) -> !infrt.dense_tensor phi_dt.print_tensor (%2 : !infrt.dense_tensor) infrt.return } }