/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/platform/cudnn_helper.h" #include "glog/logging.h" #include "gtest/gtest.h" TEST(CudnnHelper, ScopedTensorDescriptor) { using paddle::platform::ScopedTensorDescriptor; using paddle::platform::DataLayout; ScopedTensorDescriptor tensor_desc; std::vector shape = {2, 4, 6, 6}; auto desc = tensor_desc.descriptor(DataLayout::kNCHW, shape); cudnnDataType_t type; int nd; std::vector dims(4); std::vector strides(4); paddle::platform::dynload::cudnnGetTensorNdDescriptor( desc, 4, &type, &nd, dims.data(), strides.data()); EXPECT_EQ(nd, 4); for (size_t i = 0; i < dims.size(); ++i) { EXPECT_EQ(dims[i], shape[i]); } EXPECT_EQ(strides[3], 1); EXPECT_EQ(strides[2], 6); EXPECT_EQ(strides[1], 36); EXPECT_EQ(strides[0], 144); } TEST(CudnnHelper, ScopedFilterDescriptor) { using paddle::platform::ScopedFilterDescriptor; using paddle::platform::DataLayout; ScopedFilterDescriptor filter_desc; std::vector shape = {2, 3, 3}; auto desc = filter_desc.descriptor(DataLayout::kNCHW, shape); cudnnDataType_t type; int nd; cudnnTensorFormat_t format; std::vector kernel(3); paddle::platform::dynload::cudnnGetFilterNdDescriptor(desc, 3, &type, &format, &nd, kernel.data()); EXPECT_EQ(GetCudnnTensorFormat(DataLayout::kNCHW), format); EXPECT_EQ(nd, 3); for (size_t i = 0; i < shape.size(); ++i) { EXPECT_EQ(kernel[i], shape[i]); } } TEST(CudnnHelper, ScopedConvolutionDescriptor) { using paddle::platform::ScopedConvolutionDescriptor; ScopedConvolutionDescriptor conv_desc; std::vector src_pads = {2, 2, 2}; std::vector src_strides = {1, 1, 1}; std::vector src_dilations = {1, 1, 1}; auto desc = conv_desc.descriptor(src_pads, src_strides, src_dilations); cudnnDataType_t type; cudnnConvolutionMode_t mode; int nd; std::vector pads(3); std::vector strides(3); std::vector dilations(3); paddle::platform::dynload::cudnnGetConvolutionNdDescriptor( desc, 3, &nd, pads.data(), strides.data(), dilations.data(), &mode, &type); EXPECT_EQ(nd, 3); for (size_t i = 0; i < src_pads.size(); ++i) { EXPECT_EQ(pads[i], src_pads[i]); EXPECT_EQ(strides[i], src_strides[i]); EXPECT_EQ(dilations[i], src_dilations[i]); } EXPECT_EQ(mode, CUDNN_CROSS_CORRELATION); } TEST(CudnnHelper, ScopedPoolingDescriptor) { using paddle::platform::ScopedPoolingDescriptor; using paddle::platform::PoolingMode; ScopedPoolingDescriptor pool_desc; std::vector src_kernel = {2, 2, 5}; std::vector src_pads = {1, 1, 2}; std::vector src_strides = {2, 2, 3}; auto desc = pool_desc.descriptor(PoolingMode::kMaximum, src_kernel, src_pads, src_strides); cudnnPoolingMode_t mode; cudnnNanPropagation_t nan_t = CUDNN_PROPAGATE_NAN; int nd; std::vector kernel(3); std::vector pads(3); std::vector strides(3); paddle::platform::dynload::cudnnGetPoolingNdDescriptor( desc, 3, &mode, &nan_t, &nd, kernel.data(), pads.data(), strides.data()); EXPECT_EQ(nd, 3); for (size_t i = 0; i < src_pads.size(); ++i) { EXPECT_EQ(kernel[i], src_kernel[i]); EXPECT_EQ(pads[i], src_pads[i]); EXPECT_EQ(strides[i], src_strides[i]); } EXPECT_EQ(mode, CUDNN_POOLING_MAX); }