// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/fc.h" #include using anakin::graph::GraphGlobalMem; using anakin::AK_FLOAT; using anakin::Precision; using anakin::saber::NV; using anakin::saber::X86; using anakin::saber::Shape; using anakin::PBlock; using anakin::PTuple; namespace paddle { namespace inference { namespace anakin { void FcOpConverter::operator()(const framework::proto::OpDesc &op, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1); auto x_name = op_desc.Input("X").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); auto *y_v = scope.FindVar(op_desc.Input("Y").front()); PADDLE_ENFORCE_NOT_NULL(y_v); auto *y_t = y_v->GetMutable(); auto input_name = op_desc.Input("X").front(); auto output_name = op_desc.Output("Out").front(); auto weight_shape = framework::vectorize2int(y_t->dims()); engine_->AddOp(op_name, "Dense", {input_name}, {output_name}); engine_->AddOpAttr(op_name, "bias_term", false); engine_->AddOpAttr(op_name, "axis", 1); int out_dim = weight_shape[1]; engine_->AddOpAttr(op_name, "out_dim", out_dim); weight_shape.push_back(1); weight_shape.push_back(1); Shape anakin_shape(weight_shape); framework::LoDTensor weight_tensor; weight_tensor.Resize(y_t->dims()); TensorCopySync((*y_t), platform::CPUPlace(), &weight_tensor); auto *weight1 = GraphGlobalMem::Global().template new_block(anakin_shape); float *cpu_data = static_cast(weight1->h_tensor().mutable_data()); std::copy_n(weight_tensor.data(), weight_tensor.numel(), cpu_data); weight1->d_tensor().set_shape(anakin_shape); weight1->d_tensor().copy_from(weight1->h_tensor()); engine_->AddOpAttr(op_name, "weight_1", *weight1); } } // namespace anakin } // namespace inference } // namespace paddle