# copyright (c) 2019 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. from __future__ import print_function import unittest import paddle.fluid as fluid import six import numpy as np from paddle.fluid.contrib.slim.graph import GraphWrapper from paddle.fluid import core def residual_block(num): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=bias_attr) return fluid.layers.batch_norm(input=tmp, act=act) data = fluid.layers.data(name='image', shape=[1, 8, 8], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') data.stop_gradinet = False hidden = data for _ in six.moves.xrange(num): conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True) short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None) hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') fc = fluid.layers.fc(input=hidden, size=10) loss = fluid.layers.cross_entropy(input=fc, label=label) loss = fluid.layers.mean(loss) return data, label, loss class TestGraphWrapper(unittest.TestCase): def build_program(self): place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): image, label, self.loss = residual_block(2) eval_program = main.clone() opt = fluid.optimizer.SGD(learning_rate=0.001) opt.minimize(self.loss) self.scope = core.Scope() exe = fluid.Executor(place) exe.run(startup, scope=self.scope) self.eval_graph = GraphWrapper( program=eval_program, in_nodes={'image': image.name, 'label': label.name}, out_nodes={'loss': self.loss.name}) self.train_graph = GraphWrapper( program=main, in_nodes={'image': image.name, 'label': label.name}, out_nodes={'loss': self.loss.name}) def test_all_parameters(self): self.build_program() self.assertEquals(len(self.train_graph.all_parameters()), 24) def test_all_vars(self): self.build_program() self.assertEquals(len(self.train_graph.vars()), 90) def test_numel_params(self): self.build_program() self.assertEquals(self.train_graph.numel_params(), 13258) def test_compile(self): self.build_program() place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) self.train_graph.compile() exe.run(self.train_graph.compiled_graph, scope=self.scope, feed={ 'image': np.random.randint(0, 40, [16, 1, 8, 8]).astype('float32'), 'label': np.random.randint(0, 10, [16, 1]).astype('int64') }) def test_pre_and_next_ops(self): self.build_program() for op in self.train_graph.ops(): for next_op in self.train_graph.next_ops(op): self.assertTrue(op in self.train_graph.pre_ops(next_op)) def test_get_optimize_graph(self): self.build_program() place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) opt = fluid.optimizer.SGD(learning_rate=0.001) train_graph = self.eval_graph.get_optimize_graph( opt, place, self.scope, no_grad_var_names=['image']) self.assertEquals(len(self.train_graph.ops()), len(train_graph.ops())) exe = fluid.Executor(place) train_graph.compile() image = np.random.randint(0, 225, [16, 1, 8, 8]).astype('float32') label = np.random.randint(0, 10, [16, 1]).astype('int64') exe.run(train_graph.compiled_graph, scope=self.scope, feed={'image': image, 'label': label}) def test_flops(self): self.build_program() self.assertEquals(self.train_graph.flops(), 354624) if __name__ == '__main__': unittest.main()