# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class Sampler(object): def __init__(self, range, seed): self.range_ = range self.seed_ = seed np.random.seed(self.seed_) def sample(self): rasie("No Implementation!") def probability(self, value): raise ("No Implementation!") class LogUniformSampler(Sampler): def __init__(self, range, seed): super(LogUniformSampler, self).__init__(range, seed) self.log_range_ = np.log(self.range_ + 1) def sample(self): value = int(np.exp(np.random.uniform(0.0, self.log_range_)) - 1) return value % self.range_ def probability(self, value): return np.log((value + 2.0) / (value + 1.0)) / self.log_range_ def adjust_prob(prob, num_samples, num_tries): if num_samples == num_tries: return prob * num_samples else: return -np.expm1(num_tries * np.log1p(-prob)) def take_along_axis1(array, index): out = np.zeros_like(index, dtype=array.dtype) n_row, n_col = index.shape for i in range(n_row): for j in range(n_col): out[i, j] = array[i, index[i, j]] return out def sample_prob(sampler, num_samples, label): batch_size, num_true = label.shape num_sampled_classes = num_samples + num_true samples = np.zeros((batch_size, num_sampled_classes), dtype=np.int64) probabilities = np.zeros( (batch_size, num_sampled_classes), dtype=np.float64) tmp_samples = set() num_tries = 0 j = 0 while j < num_true: for i in range(batch_size): samples[i, j] = label[i, j] probabilities[i, j] = sampler.probability(label[i, j]) j += 1 while j < num_sampled_classes: v = sampler.sample() num_tries += 1 if v not in tmp_samples: tmp_samples.add(v) for i in range(batch_size): samples[i, j] = v probabilities[i, j] = sampler.probability(v) j += 1 for k in range(num_sampled_classes): for i in range(batch_size): probabilities[i, k] = adjust_prob(probabilities[i, k], num_samples, num_tries) return (samples, probabilities) def compute_remove_accidental_hits(sampled_logits, samples, num_true): batch_size, num_sampled_classes = samples.shape for i in range(batch_size): true_labels = set(samples[i, np.arange(num_true)]) for j in range(num_true, num_sampled_classes): if samples[i, j] in true_labels: sampled_logits[i, j] -= 1e20 def sample_logits(logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples, custom_samples=None, custom_probabilities=None): batch_size, num_classes = logits.shape num_true = label.shape[1] num_sampled_classes = num_true + num_samples if use_custom_samples: samples = custom_samples probabilities = custom_probabilities else: sampler = LogUniformSampler(num_classes, seed) samples, probabilities = sample_prob(sampler, num_samples, label) sampled_logits = take_along_axis1(logits, samples) #print(samples) #print(probabilities) #print(sampled_logits) if remove_accidental_hits: compute_remove_accidental_hits(sampled_logits, samples, num_true) sampled_logits -= np.log(probabilities) sampled_label = np.tile(np.arange(num_true), (batch_size, 1)) return (sampled_logits, samples, sampled_label, probabilities) class TestSampleLogitsOp(OpTest): ''' Test SampleLogitsOp, but with random results precomputed in python and just test the non-random part. ''' def generate_data(self, logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples, custom_samples, custom_probabilities): self.attrs = { 'num_samples': num_samples, 'use_custom_samples': use_custom_samples, 'remove_accidental_hits': remove_accidental_hits, 'seed': seed } self.inputs = { 'Logits': logits, 'Label': label, 'CustomSamples': custom_samples, 'CustomProbabilities': custom_probabilities } def set_data(self, batch_size, num_classes, num_true, num_samples, seed, remove_accidental_hits): logits = np.random.randn(batch_size, num_classes) label = np.stack([ np.random.choice( range(0, num_classes), num_true, replace=False) for _ in range(batch_size) ]) sampler = LogUniformSampler(num_classes, seed) custom_samples, custom_probabilities = \ sample_prob(sampler, num_samples, label) use_custom_samples = True remove_accidental_hits = remove_accidental_hits self.generate_data(logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples, custom_samples, custom_probabilities) def compute(self): out = sample_logits(self.inputs["Logits"], self.inputs["Label"], self.attrs["num_samples"], self.attrs["seed"], self.attrs["remove_accidental_hits"], self.attrs["use_custom_samples"], self.inputs["CustomSamples"], self.inputs["CustomProbabilities"]) self.outputs = { 'SampledLogits': out[0], 'Samples': out[1], 'SampledLabel': out[2], 'Probabilities': out[3] } def setUp(self): self.op_type = 'sample_logits' batch_size = 5 num_classes = 20 num_true = 5 num_samples = 10 seed = 10 remove_accidental_hits = True self.set_data(batch_size, num_classes, num_true, num_samples, seed, remove_accidental_hits) self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): pass self.check_grad( ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) class TestSampleLogitsOp2(TestSampleLogitsOp): def setUp(self): self.op_type = 'sample_logits' batch_size = 5 num_classes = 20 num_true = 5 num_samples = 10 seed = 10 remove_accidental_hits = False self.set_data(batch_size, num_classes, num_true, num_samples, seed, remove_accidental_hits) self.compute() class TestSampleLogitsOp3(TestSampleLogitsOp): def setUp(self): self.op_type = 'sample_logits' batch_size = 5 num_classes = 100 num_true = 5 num_samples = 25 seed = 10 remove_accidental_hits = True self.set_data(batch_size, num_classes, num_true, num_samples, seed, remove_accidental_hits) self.compute() class TestSampleLogitsOp4(TestSampleLogitsOp): def setUp(self): self.op_type = 'sample_logits' batch_size = 5 num_classes = 100 num_true = 5 num_samples = 25 seed = 10 remove_accidental_hits = False self.set_data(batch_size, num_classes, num_true, num_samples, seed, remove_accidental_hits) self.compute() class TestSampleLogitsOpV2(OpTest): ''' Test SampleLogitsOp, but with random results precomputed in C++ and copied to python and just test the non-random part. ''' def generate_data(self, logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples): self.attrs = { 'num_samples': num_samples, 'use_custom_samples': use_custom_samples, 'remove_accidental_hits': remove_accidental_hits, 'seed': seed } self.inputs = {'Logits': logits, 'Label': label} def set_data(self, num_classes, num_samples, seed, remove_accidental_hits): label = np.array([[6, 12, 15, 5, 1], [0, 9, 4, 1, 10], [0, 2, 10, 16, 13], [14, 4, 7, 2, 1], [3, 18, 11, 8, 14]]) batch_size, num_true = label.shape use_custom_samples = False num_sampled_classes = num_samples + num_true logits = np.random.randn(batch_size, num_classes) remove_accidental_hits = remove_accidental_hits self.generate_data(logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples) # python and c++ use different random generator # use fetched samples from c++ for python code self.fetched_samples = np.array( [[6, 12, 15, 5, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], [0, 9, 4, 1, 10, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], [0, 2, 10, 16, 13, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], [14, 4, 7, 2, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], [3, 18, 11, 8, 14, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4]]) fectched_num_tries = 21 probabilities = np.zeros( (batch_size, num_sampled_classes), dtype=np.float64) sampler = LogUniformSampler(num_classes, seed) for j in range(num_sampled_classes): for i in range(batch_size): probabilities[i, j] = sampler.probability(self.fetched_samples[ i, j]) probabilities[i, j] = adjust_prob( probabilities[i, j], num_samples, fectched_num_tries) self.probabilities = probabilities def compute(self): out = sample_logits(self.inputs["Logits"], self.inputs["Label"], self.attrs["num_samples"], self.attrs["seed"], self.attrs["remove_accidental_hits"], True, self.fetched_samples.astype(np.int64), self.probabilities) self.outputs = { 'SampledLogits': out[0], 'Samples': out[1], 'SampledLabel': out[2], 'Probabilities': out[3] } def setUp(self): self.op_type = 'sample_logits' num_samples = 10 num_classes = 20 seed = 10 remove_accidental_hits = True self.set_data(num_classes, num_samples, seed, remove_accidental_hits) self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): pass self.check_grad( ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) class TestSampleLogitsOpV3(OpTest): ''' Test SampleLogitsOp, but with random results precomputed in C++ and copied to python and just test the non-random part. ''' def generate_data(self, logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples): self.attrs = { 'num_samples': num_samples, 'use_custom_samples': use_custom_samples, 'remove_accidental_hits': remove_accidental_hits, 'seed': seed } self.inputs = {'Logits': logits, 'Label': label} def set_data(self, num_classes, num_samples, seed, remove_accidental_hits): label = [52, 2, 2, 17, 96, 2, 17, 96, 37, 2] samples = [ 3, 12, 74, 28, 1, 79, 2, 42, 8, 13, 0, 18, 88, 49, 14, 46, 39, 57, 26, 75, 9, 50, 16, 66, 6, 23, 5, 11, 17, 54, 35, 20, 53, 10, 47, 80, 38, 7, 4, 31, 15, 19, 58, 22, 34, 41, 73, 62, 95, 25, 70, 37, 30, 65, 27, 51, 43, 32, 99, 21, 56, 29, 40, 69, 55, 98, 77, 67, 33, 89, 63, 81, 59, 48, 91, 68, 72, 61, 52, 86 ] self.fetched_samples = np.array([[x] + samples for x in label]) fectched_num_tries = 323 label = self.fetched_samples[:, 0:1] batch_size, num_true = label.shape use_custom_samples = False num_sampled_classes = num_samples + num_true logits = np.random.randn(batch_size, num_classes) remove_accidental_hits = remove_accidental_hits self.generate_data(logits, label, num_samples, seed, remove_accidental_hits, use_custom_samples) # python and c++ use different random generator # use fetched samples from c++ for python code probabilities = np.zeros( (batch_size, num_sampled_classes), dtype=np.float64) sampler = LogUniformSampler(num_classes, seed) for j in range(num_sampled_classes): for i in range(batch_size): probabilities[i, j] = sampler.probability(self.fetched_samples[ i, j]) probabilities[i, j] = adjust_prob( probabilities[i, j], num_samples, fectched_num_tries) self.probabilities = probabilities def compute(self): out = sample_logits(self.inputs["Logits"], self.inputs["Label"], self.attrs["num_samples"], self.attrs["seed"], self.attrs["remove_accidental_hits"], True, self.fetched_samples.astype(np.int64), self.probabilities) self.outputs = { 'SampledLogits': out[0], 'Samples': out[1], 'SampledLabel': out[2], 'Probabilities': out[3] } def setUp(self): self.op_type = 'sample_logits' num_samples = 80 num_classes = 100 seed = 123 remove_accidental_hits = True self.set_data(num_classes, num_samples, seed, remove_accidental_hits) self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): pass self.check_grad( ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) if __name__ == '__main__': unittest.main()