/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include #include #include #include #include #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/scope.h" #include namespace paddle { namespace framework { const std::string kFeedOpType = "feed"; const std::string kFetchOpType = "fetch"; Executor::Executor(const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); device_contexts_.resize(places.size()); for (size_t i = 0; i < places.size(); i++) { if (platform::is_cpu_place(places[i])) { device_contexts_[i] = new platform::CPUDeviceContext( boost::get(places[i])); } else if (platform::is_gpu_place(places[i])) { #ifdef PADDLE_WITH_CUDA device_contexts_[i] = new platform::CUDADeviceContext( boost::get(places[i])); #else PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); #endif } } } Executor::~Executor() { for (auto& device_context : device_contexts_) { delete device_context; } } void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) { // TODO(tonyyang-svail): // - only runs on the first device (i.e. no interdevice communication) // - will change to use multiple blocks for RNN op and Cond Op PADDLE_ENFORCE_GT(pdesc.blocks_size(), block_id); auto& block = pdesc.blocks(block_id); auto& device = device_contexts_[0]; // Instantiate all the vars in the global scope for (auto& var : block.vars()) { scope->NewVar(var.name()); } Scope& local_scope = scope->NewScope(); std::vector should_run = Prune(pdesc, block_id); PADDLE_ENFORCE_EQ(should_run.size(), block.ops_size()); for (size_t i = 0; i < should_run.size(); ++i) { // if (should_run[i]) { if (true) { for (auto& var : block.ops(i).outputs()) { for (auto& argu : var.arguments()) { if (local_scope.FindVar(argu) == nullptr) { local_scope.NewVar(argu); } } } LOG(INFO) << block.ops(i).type(); if (block.ops(i).type() == "sum") { LOG(INFO) << "Here"; for (auto& var : block.ops(i).inputs()) { for (auto& argu : var.arguments()) { LOG(INFO) << var.parameter() << " " << argu; } } } auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i)); LOG(INFO) << op->DebugString(); op->Run(local_scope, *device); } } // TODO(tonyyang-svail): // - Destroy local_scope } std::vector Executor::Prune(const ProgramDesc& pdesc, int block_id) { // TODO(tonyyang-svail): // - will change to use multiple blocks for RNN op and Cond Op auto& block = pdesc.blocks(block_id); auto& ops = block.ops(); bool expect_feed = true; for (auto& op_desc : ops) { PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed, "All FeedOps are at the beginning of the ProgramDesc"); expect_feed = (op_desc.type() == kFeedOpType); } bool expect_fetch = true; for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { auto& op_desc = *op_iter; PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch, "All FetchOps must at the end of the ProgramDesc"); expect_fetch = (op_desc.type() == kFetchOpType); } std::set dependent_vars; std::vector should_run; for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { auto& op_desc = *op_iter; bool found_dependent_vars = false; for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { if (dependent_vars.count(argu) != 0) { found_dependent_vars = true; } } } if (op_desc.type() == kFetchOpType || found_dependent_vars) { // erase its output to the dependency graph for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { dependent_vars.erase(argu); } } // insert its input to the dependency graph for (auto& var : op_desc.inputs()) { for (auto& argu : var.arguments()) { dependent_vars.insert(argu); } } LOG(INFO) << "1 " << op_desc.type(); should_run.push_back(true); } else { LOG(INFO) << "0 " << op_desc.type(); should_run.push_back(false); } } // TODO(tonyyang-svail): // - check this after integration of Init // PADDLE_ENFORCE(dependent_vars.empty()); // since we are traversing the ProgramDesc in reverse order // we reverse the should_run vector std::reverse(should_run.begin(), should_run.end()); return should_run; } } // namespace framework } // namespace paddle