""" All layers just related to the neural network. """ from ..layer_helper import LayerHelper from ..initializer import Normal, Constant from ..framework import Variable from ..param_attr import ParamAttr from tensor import concat __all__ = [ 'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'lstm_unit', 'reduce_sum' ] def fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None): """ **Fully Connected Layer** This layer accepts multiple inputs and applies a linear transformation to each input. If activation type is provided, the corresponding activation function is applied to the output of the linear transformation. For each input :math:`X`, the equation is: .. math:: Out = Act(WX + b) In the above equation: * :math:`X`: Input value, a tensor with rank at least 2. * :math:`W`: Weight, a 2-D tensor with shape [M, N]. * :math:`b`: Bias, a 2-D tensor with shape [M, 1]. * :math:`Act`: Activation function. * :math:`Out`: Output value, same shape with :math:`X`. All the input variables are passed in as local variables to the LayerHelper constructor. Args: input(Variable|list): Input tensors. Each tensor has a rank of atleast 2 size(int): Output size num_flatten_dims(int): Number of columns in input param_attr(ParamAttr|list): The parameters/weights to the FC Layer bias_attr(ParamAttr|list): Bias parameter for the FC layer act(str): Activation type name(str): Name/alias of the function Returns: Variable: The tensor variable storing the transformation and \ non-linearity activation result. Raises: ValueError: If rank of input tensor is less than 2. Examples: .. code-block:: python data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32') fc = fluid.layers.fc(input=data, size=1000, act="tanh") """ helper = LayerHelper('fc', **locals()) dtype = helper.input_dtype() mul_results = [] for input_var, param_attr in helper.iter_inputs_and_params(): input_shape = input_var.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) ] + [size] w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) tmp = helper.create_tmp_variable(dtype) helper.append_op( type="mul", inputs={ "X": input_var, "Y": w, }, outputs={"Out": tmp}, attrs={'x_num_col_dims': num_flatten_dims, 'y_num_col_dims': 1}) mul_results.append(tmp) # sum if len(mul_results) == 1: pre_bias = mul_results[0] else: pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) # add bias pre_activation = helper.append_bias_op(pre_bias) # add activation return helper.append_activation(pre_activation) def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'): """ **Embedding Layer** This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table. The result of this lookup is the embedding of each ID in the *input*. All the input variables are passed in as local variables to the LayerHelper constructor. Args: input(Variable): Input to the function size(tuple|list|None): Shape of the look up table parameter is_sparse(bool): Boolean flag that specifying whether the input is sparse param_attr(ParamAttr): Parameters for this layer dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc Returns: Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32') fc = fluid.layers.embedding(input=data, size=16) """ helper = LayerHelper('embedding', **locals()) w = helper.create_parameter( attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) tmp = helper.create_tmp_variable(dtype) helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': w}, outputs={'Out': tmp}, attrs={'is_sparse': is_sparse}) return tmp # TODO(qijun): expose H0 and C0 def dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32'): helper = LayerHelper('lstm', **locals()) size = size / 4 weight = helper.create_parameter( attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) bias_size = [1, 7 * size] if not use_peepholes: bias_size[1] = 4 * size bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) hidden = helper.create_tmp_variable(dtype) cell = helper.create_tmp_variable(dtype) batch_gate = helper.create_tmp_variable(dtype) batch_cell_pre_act = helper.create_tmp_variable(dtype) helper.append_op( type='lstm', inputs={'Input': input, 'Weight': weight, 'Bias': bias}, outputs={ 'Hidden': hidden, 'Cell': cell, 'BatchGate': batch_gate, 'BatchCellPreAct': batch_cell_pre_act }, attrs={ 'use_peepholes': use_peepholes, 'is_reverse': is_reverse, 'gate_activation': gate_activation, 'cell_activation': cell_activation, 'candidate_activation': candidate_activation }) return hidden, cell def gru_unit(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid'): """ GRUUnit Operator implements partial calculations of the GRU unit as following: $$ update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\ reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\ output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\ output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t) $$ which is same as one time step of GRU Operator. @note To implement the complete GRU unit, fully-connected operator must be used before to feed xu, xr and xc as the Input of GRUUnit operator. TODO(ChunweiYan) add more document here """ activation_dict = dict( identity=0, sigmoid=1, tanh=2, relu=3, ) activation = activation_dict[activation] gate_activation = activation_dict[gate_activation] helper = LayerHelper('gru_unit', **locals()) dtype = helper.input_dtype() size = size / 3 # create weight if weight is None: weight = helper.create_parameter( attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) # create bias if bias is None: bias_size = [1, 3 * size] bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) gate = helper.create_tmp_variable(dtype) reset_hidden_pre = helper.create_tmp_variable(dtype) updated_hidden = helper.create_tmp_variable(dtype) helper.append_op( type='gru_unit', inputs={'Input': input, 'HiddenPrev': hidden, 'Weight': weight}, outputs={ 'Gate': gate, 'ResetHiddenPrev': reset_hidden_pre, 'Hidden': updated_hidden, }, attrs={ 'activation': 0, 'gate_activation': 1, }) return updated_hidden, reset_hidden_pre, gate def linear_chain_crf(input, label, param_attr=None): helper = LayerHelper('linear_chain_crf', **locals()) size = input.shape[1] transition = helper.create_parameter( attr=helper.param_attr, shape=[size + 2, size], dtype=helper.input_dtype()) alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='linear_chain_crf', inputs={"Emission": [input], "Transition": transition, "Label": label}, outputs={ "Alpha": [alpha], "EmissionExps": [emission_exps], "TransitionExps": transition_exps, "LogLikelihood": log_likelihood }) return log_likelihood def crf_decoding(input, param_attr, label=None): helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='crf_decoding', inputs={"Emission": [input], "Transition": transition, "Label": label}, outputs={"ViterbiPath": [viterbi_path]}) return viterbi_path def cos_sim(X, Y, **kwargs): """ This function performs the cosine similarity between two tensors X and Y and returns that as the output. """ helper = LayerHelper('cos_sim', **kwargs) out = helper.create_tmp_variable(dtype=X.dtype) xnorm = helper.create_tmp_variable(dtype=X.dtype) ynorm = helper.create_tmp_variable(dtype=X.dtype) helper.append_op( type='cos_sim', inputs={'X': [X], 'Y': [Y]}, outputs={'Out': [out], 'XNorm': [xnorm], 'YNorm': [ynorm]}) return out def cross_entropy(input, label, **kwargs): """ This function computes cross_entropy using the input and label. """ helper = LayerHelper('cross_entropy', **kwargs) out = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='cross_entropy', inputs={'X': [input], 'Label': [label]}, outputs={'Y': [out]}, attrs=kwargs) return out def square_error_cost(input, label, **kwargs): """ This functions returns the squared error cost using the input and label. The output is appending the op to do the above. """ helper = LayerHelper('square_error_cost', **kwargs) minus_out = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='elementwise_sub', inputs={'X': [input], 'Y': [label]}, outputs={'Out': [minus_out]}) square_out = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]}) return square_out def accuracy(input, label, k=1, correct=None, total=None, **kwargs): """ This function computes the accuracy using the input and label. The output is the top_k inputs and their indices. """ helper = LayerHelper("accuracy", **kwargs) topk_out = helper.create_tmp_variable(dtype=input.dtype) topk_indices = helper.create_tmp_variable(dtype="int64") helper.append_op( type="top_k", inputs={"X": [input]}, outputs={"Out": [topk_out], "Indices": [topk_indices]}, attrs={"k": k}) acc_out = helper.create_tmp_variable(dtype="float32") if correct is None: correct = helper.create_tmp_variable(dtype="int64") if total is None: total = helper.create_tmp_variable(dtype="int64") helper.append_op( type="accuracy", inputs={ "Out": [topk_out], "Indices": [topk_indices], "Label": [label] }, outputs={ "Accuracy": [acc_out], "Correct": [correct], "Total": [total], }) return acc_out def chunk_eval(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, **kwargs): """ This function computes and outputs the precision, recall and F1-score of chunk detection. """ helper = LayerHelper("chunk_eval", **kwargs) # prepare output precision = helper.create_tmp_variable(dtype="float32") recall = helper.create_tmp_variable(dtype="float32") f1_score = helper.create_tmp_variable(dtype="float32") num_infer_chunks = helper.create_tmp_variable(dtype="int64") num_label_chunks = helper.create_tmp_variable(dtype="int64") num_correct_chunks = helper.create_tmp_variable(dtype="int64") helper.append_op( type="chunk_eval", inputs={"Inference": [input], "Label": [label]}, outputs={ "Precision": [precision], "Recall": [recall], "F1-Score": [f1_score], "NumInferChunks": [num_infer_chunks], "NumLabelChunks": [num_label_chunks], "NumCorrectChunks": [num_correct_chunks] }, attrs={ "num_chunk_types": num_chunk_types, "chunk_scheme": chunk_scheme, "excluded_chunk_types": excluded_chunk_types or [] }) return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks def sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None): """ This function creates the op for sequence_conv, using the inputs and other convolutional configurations for the filters and stride as given in the input parameters to the function. """ # FIXME(dzh) : want to unify the argument of python layer # function. So we ignore some unecessary attributes. # such as, padding_trainable, context_start. helper = LayerHelper('sequence_conv', **locals()) dtype = helper.input_dtype() filter_shape = [filter_size * input.shape[1], num_filters] filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type='sequence_conv', inputs={ 'X': [input], 'Filter': [filter_param], }, outputs={"Out": pre_bias}, attrs={ 'contextStride': filter_stride, 'contextStart': -int(filter_size / 2), 'contextLength': filter_size }) pre_act = helper.append_bias_op(pre_bias) return helper.append_activation(pre_act) def conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, act=None, name=None): """ This function creates the op for a 2-dimensional Convolution. This is performed using the parameters of filters(size, dimensionality etc) , stride and other configurations for a Convolution operation. This funciton can also append an activation on top of the conv-2d output, if mentioned in the input parameters. """ if stride is None: stride = [1, 1] helper = LayerHelper('conv2d', **locals()) dtype = helper.input_dtype() num_channels = input.shape[1] if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels / groups if isinstance(filter_size, int): filter_size = [filter_size, filter_size] if isinstance(stride, int): stride = [stride, stride] if isinstance(padding, int): padding = [padding, padding] input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size def _get_default_param_initializer(): std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 return Normal(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer()) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type='conv2d_cudnn', inputs={ 'Input': input, 'Filter': filter_param, }, outputs={"Output": pre_bias}, attrs={'strides': stride, 'paddings': padding, 'groups': groups}) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) return helper.append_activation(pre_act) def sequence_pool(input, pool_type, **kwargs): """ This function add the operator for sequence pooling. This is applied on top of the input using pool_type mentioned in the parameters. """ helper = LayerHelper('sequence_pool', input=input, **kwargs) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) max_index = helper.create_tmp_variable(dtype) helper.append_op( type="sequence_pool", inputs={"X": input}, outputs={"Out": pool_out, "MaxIndex": max_index}, attrs={"pooltype": pool_type.upper()}) return pool_out def pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False): """ This function adds the operator for pooling in 2 dimensions, using the pooling configurations mentioned in input parameters. """ if pool_padding is None: pool_padding = [0, 0] if pool_stride is None: pool_stride = [1, 1] if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if isinstance(pool_size, int): pool_size = [pool_size, pool_size] if isinstance(pool_stride, int): pool_stride = [pool_stride, pool_stride] if isinstance(pool_padding, int): pool_padding = [pool_padding, pool_padding] helper = LayerHelper('pool2d', **locals()) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) helper.append_op( type="pool2d", inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": pool_type, "ksize": pool_size, "global_pooling": global_pooling, "strides": pool_stride, "paddings": pool_padding }) return pool_out def batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW'): """ This function helps create an operator to implement the BatchNorm layer using the configurations from the input parameters. """ helper = LayerHelper('batch_norm', **locals()) dtype = helper.input_dtype() input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) bias = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True) mean = helper.create_global_variable( dtype=input.dtype, shape=param_shape, persistable=True) helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) variance = helper.create_global_variable( dtype=input.dtype, shape=param_shape, persistable=True) helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) # create output # mean and mean_out share the same memory mean_out = mean # variance and variance out share the same memory variance_out = variance saved_mean = helper.create_tmp_variable(dtype) saved_variance = helper.create_tmp_variable(dtype) batch_norm_out = helper.create_tmp_variable(dtype) helper.append_op( type="batch_norm", inputs={ "X": input, "Scale": scale, "Bias": bias, "Mean": mean, "Variance": variance }, outputs={ "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance }, attrs={"momentum": momentum, "epsilon": epsilon, "is_test": is_test}) return helper.append_activation(batch_norm_out) def beam_search_decode(ids, scores): helper = LayerHelper('beam_search_decode', **locals()) sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) helper.append_op( type="beam_search_decode", inputs={"Ids": ids, "Scores": scores}, outputs={ "SentenceIds": sentence_ids, "SentenceScores": sentence_scores }) return sentence_ids, sentence_scores def conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None): """ The transpose of conv2d layer. This layer is also known as deconvolution layer. Args: input(Variable): The input image with [N, C, H, W] format. num_filters(int): The number of filter. It is as same as the output image channel. output_size(int|tuple|None): The output image size. If output size is a tuple, it must contain two integers, (image_H, image_W). This parameter only works when filter_size is None. filter_size(int|tuple|None): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. None if use output size to calculate filter_size padding(int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. stride(int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. dilation(int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. param_attr: Parameter Attribute. main_program(Program): the main program startup_program(Program): the startup program Returns: Variable: Output image. """ helper = LayerHelper("conv2d_transpose", **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv2d_transpose must be Variable") input_channel = input.shape[1] op_attr = dict() if isinstance(padding, int): op_attr['paddings'] = [padding, padding] elif padding is not None: op_attr['paddings'] = padding if isinstance(stride, int): op_attr['strides'] = [stride, stride] elif stride is not None: op_attr['strides'] = stride if isinstance(dilation, int): op_attr['dilations'] = [dilation, dilation] elif dilation is not None: op_attr['dilations'] = dilation if filter_size is None: if output_size is None: raise ValueError("output_size must be set when filter_size is None") if isinstance(output_size, int): output_size = [output_size, output_size] padding = op_attr.get('paddings', [0, 0]) stride = op_attr.get('strides', [1, 1]) dilation = op_attr.get('dilations', [1, 1]) h_in = input.shape[2] w_in = input.shape[3] filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0] - 1) / dilation[0] + 1 filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1] - 1) / dilation[1] + 1 filter_size = [filter_size_h, filter_size_w] elif isinstance(filter_size, int): filter_size = [filter_size, filter_size] filter_shape = [input_channel, num_filters] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) out = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='conv2d_transpose', inputs={'Input': [input], 'Filter': [img_filter]}, outputs={'Output': out}, attrs=op_attr) return out def sequence_expand(x, y): """Sequence Expand Layer. This layer will expand the input variable **x** according to LoD information of **y**. And the following examples will explain how sequence_expand works: .. code-block:: text * Case 1 x is a LoDTensor: x.lod = [[0, 2, 3], [0, 1, 3, 4]] x.data = [a, b, c, d] x.dims = [4, 1] y is a LoDTensor: y.lod = [[0, 2, 4], [0, 3, 6, 7, 8]] with condition len(y.lod[-1]) - 1 == x.dims[0] then output is a 2-level LoDTensor: out.lod = [[0, 2, 4], [0, 3, 6, 7, 8]] out.data = [a, a, a, b, b, b, c, d] out.dims = [8, 1] * Case 2 x is a Tensor: x.data = [a, b, c] x.dims = [3, 1] y is a LoDTensor: y.lod = [[0, 2, 3, 6]] with condition len(y.lod[-1]) - 1 == x.dims[0] then output is a 1-level LoDTensor: out.lod = [[0, 2, 3, 6]] out.data = [a, a, b, c, c, c] out.dims = [6, 1] Args: x (Variable): The input variable which is a Tensor or LoDTensor. y (Variable): The input variable which is a LoDTensor. Returns: Variable: The expanded variable which is a LoDTensor. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10], dtype='float32') y = fluid.layers.data(name='y', shape=[10, 20], dtype='float32', lod_level=1) out = layers.sequence_expand(x=x, y=y) """ helper = LayerHelper('sequence_expand', input=x, **locals()) dtype = helper.input_dtype() tmp = helper.create_tmp_variable(dtype) helper.append_op( type='sequence_expand', inputs={'X': x, 'Y': y}, outputs={'Out': tmp}) return tmp def lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None): """Lstm unit layer. The equation of a lstm step is: .. math:: i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i) f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c) o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o) h_t & = o_t tanh(c_t) The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and :math:`c_{t-1}`. The implementation separates the linear transformation and non-linear transformation apart. Here, we take :math:`i_t` as an example. The linear transformation is applied by calling a `fc` layer and the equation is: .. math:: L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i The non-linear transformation is applied by calling `lstm_unit_op` and the equation is: .. math:: i_t = \sigma(L_{i_t}) This layer has two outputs including :math:`h_t` and :math:`o_t`. Args: x_t (Variable): The input value of current step. hidden_t_prev (Variable): The hidden value of lstm unit. cell_t_prev (Variable): The cell value of lstm unit. forget_bias (float): The forget bias of lstm unit. param_attr (ParamAttr): The attributes of parameter weights, used to set initializer, name etc. bias_attr (ParamAttr): The attributes of bias weights, if not False, bias weights will be created and be set to default value. Returns: tuple: The hidden value and cell value of lstm unit. Raises: ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\ not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \ and **cell_t_prev** not be the same. Examples: .. code-block:: python x_t = fluid.layers.fc(input=x_t_data, size=10) prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20) prev_cell = fluid.layers.fc(input=prev_cell_data, size=30) hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell) """ helper = LayerHelper('lstm_unit', **locals()) if len(x_t.shape) != 2: raise ValueError("Rank of x_t must be 2.") if len(hidden_t_prev.shape) != 2: raise ValueError("Rank of hidden_t_prev must be 2.") if len(cell_t_prev.shape) != 2: raise ValueError("Rank of cell_t_prev must be 2.") if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ 0] != cell_t_prev.shape[0]: raise ValueError("The 1s dimension of x_t, hidden_t_prev and " "cell_t_prev must be the same.") if bias_attr is None: bias_attr = ParamAttr() size = cell_t_prev.shape[1] concat_out = concat(input=[x_t, hidden_t_prev], axis=1) fc_out = fc(input=concat_out, size=4 * size, param_attr=param_attr, bias_attr=bias_attr) dtype = x_t.dtype c = helper.create_tmp_variable(dtype) h = helper.create_tmp_variable(dtype) helper.append_op( type='lstm_unit', inputs={"X": fc_out, "C_prev": cell_t_prev}, outputs={"C": c, "H": h}, attrs={"forget_bias": forget_bias}) return h, c def reduce_sum(input, dim=None, keep_dim=False): """ Computes the sum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor or LoDTensor. dim (int|None): The dimension along which the sum is performed. If :attr:`None`, sum all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. keep_dim (bool): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. Returns: Variable: The reduced Tensor variable. Examples: .. code-block:: python # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the correspending output tensor. fluid.layers.reduce_sum(x) # [3.5] fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6] fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6] fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]] """ helper = LayerHelper('reduce_sum', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='reduce_sum', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None else 0, 'keep_dim': keep_dim, 'reduce_all': True if dim == None else False }) return out