#!/bin/bash # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. set -e # test use DISTRIBUTED_TRAINER_ENDPOINTS env in paddlecloud unset PADDLE_PORT export DISTRIBUTED_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 export cluster_node_ips="127.0.0.1,127.0.0.2" export PADDLE_TRAINERS_NUM=2 export POD_IP=127.0.0.1 export PADDLE_TRAINERS=127.0.0.1,127.0.0.2 export PADDLE_TRAINER_ID=0 export TRAINER_PORTS_NUM=2 file_0="multi_process_fleetrun.check_0.log" file_1="multi_process_fleetrun.check_1.log" distributed_args="--ips=${cluster_node_ips} --gpus=0,1 --log_dir=testlog" echo "paddle.distributed.fleet.launch async poll process test" if ! CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.fleet.launch ${distributed_args} multi_process.py fleetrun abort; then echo "train abort as planned" fi abort_str1="abort>>> selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0" if grep -q "$abort_str1" "$file_0"; then echo "trainer 0 abort as planned" else echo "trainer 0 not abort as planned" exit -1 fi if [ ! -f $file_1 ]; then echo "trainer 1 terminate as planned" else echo "trainer 1 not terminate as planned" exit -1 fi