# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core class TestTopkOp(OpTest): def setUp(self): self.variable_k = False self.set_args() self.op_type = "top_k" self.dtype = np.float64 self.init_dtype() k = self.top_k input = np.random.random((self.row, k)).astype(self.dtype) output = np.ndarray((self.row, k)) indices = np.ndarray((self.row, k)).astype("int64") self.inputs = {'X': input} if self.variable_k: self.inputs['K'] = np.array([k]).astype("int32") else: self.attrs = {'k': k} for rowid in range(self.row): row = input[rowid] output[rowid] = np.sort(row)[::-1][:k] indices[rowid] = row.argsort()[::-1][:k] self.outputs = {'Out': output, 'Indices': indices} def init_dtype(self): pass def set_args(self): self.row = 100 self.top_k = 1 def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(set(['X']), 'Out') if __name__ == "__main__": unittest.main()